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Abstract. The problems of optimal design of truss-type structures, aimed at determining the minimal volume (weight) 
of the structure, while optimizing the bar cross-sections and the truss height, are considered. The considered problem 
is treated as a nonlinear problem of discrete optimization. In addition to the internal forces of tension or compression, 
the elements of the truss can have the bending moments. The cross-sections of the bars are designed of the rolled steel 
profiles. The mathematical models of the problem are developed, taking into account stiffness and stability requirements 
to structures. Nonlinear discrete optimization problems, formulated in this paper, are solved by the iterative method 
using the mathematical programming environment MATLAB. The buckling ratios of the bars under compression are 
adjusted in each iteration. The requirements of cross-section assortment (discretion) are secured using the method of 
branch and bound.
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1. Introduction

The paper considers the problem of weight (volume) opti-
mization of elastic trusses by optimizing the cross-sections 
of their elements and the height of the structure. Truss bars 
can have not only the internal forces of tension or compres-
sion but also the bending moments. The simplest problems 
of truss optimization were formulated in (Haug, Arora 
1980; Maciulevicius 1964, 1966; Majid 1974; Rao 2009) but 
the form of the bar cross-section was not defined in these 
works. In (Maciulevicius 1964, 1966) the cross-sections 
and the layout of the bars are optimized, when the coor-
dinates of the nodes are known, and the assumptions are 
made that the radii of the cross-sections and slenderness 
ratios of the bars do not vary. Other works (Goremikins, 
Serdjuks 2010; Kalanta et al. 2009) describe the optimiza-
tion problems where the top chord of the truss is subjected 
to distributed loading and, therefore, the truss bars have 
the bending moments. The design parameters are the ar-
eas of the bars’ cross-sections and the height of the truss. 
The optimization parameters are defined by performing 
the design of various fixed-height trusses, using comput-
er-aided design programs. The rectangular cross-sections 
are designed, when the height-width relationship is fixed 
and only one load case is evaluated (Goremikins, Serd-
juks 2010), or when the cross-sections are chosen from 
steel profiles’ assortments and up to three load cases are 

considered (Kalanta et al. 2009). In both cases, the optimal 
truss height was determined without the direct compu-
tation of mathematical programming problems, though, 
in (Kalanta et al. 2009) the mathematical models for the 
height optimization problem of the truss with horizontal 
and parabolic bottom chord were offered.

The aim of the present work is to develop the math-
ematical models and solution algorithms for the optimiza-
tion problems of the elastic truss height and bar cross-sec-
tion design. The mathematical models of the problems are 
formulated and solved as nonlinear discrete mathemati-
cal programming problems. According STR2.05.08:2005 
“Design of Steel Structures” the finite element method is 
applied, taking into account the strength and stability re-
quirements (Atkočiūnas et al. 2011; Kalanta 1995). The 
cross-sections of the bars are designed with standard steel 
profiles.

Various specific algorithms for solving nonlinear 
structural optimization problems, such as genetic (Hay-
alioglu 2000; Hayalioglu, Degertekin 2004; Zheng et al. 
2006), discrete optimization (Gutkowski 1997) and other 
algorithms (Karkauskas 2004; Manickarajah et al. 2000; 
Yuge et al. 1999; Feng et al. 2006), have been developed in 
recent years. In this paper, the solutions of the optimiza-
tion problems are made by using the mathematical pro-
gramming environment MATLAB. An iterative method 
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with the buckling ratios of bars under compression ad-
justed in each iteration is used. The requirements of cross-
section discretion are secured, using the method of branch 
and bound.

2. Discrete model and main dependencies of the 
structure

2.1. Discrete model
The equilibrium finite elements of four types are created 
(Kalanta 2007) for modelling any bar structure. However, 
in this paper, the trusses are modelled by using the fol-
lowing two types of elements k = 1, 2,…, r (Kalanta 1995, 
2007):

1) the element under tension or compression 
(Fig. 1a subjected to the action of the axial force 

2) the element under bending and tension or com-
pression with three nodes (Fig. 1b), in which 

 and the bending moments are de-
scribed by the parabolic function as follows:

	

	 (1)

		
where  – the form function of the bending mo-
ments;  – the bending moment of the jth node in the 
element; x – the coordinate of the section.

The internal forces of any kth element are described 
by such an interpolation function

	 	  (2)

where  – the vector of the internal forces of the element 
nodes;  – the interpolation matrix of the internal 
forces composed of the form functions of the internal forc-
es 

2.2. Main dependencies
The main dependencies of the structure are represented by 
the equilibrium and geometric equations and strength and 
stability conditions.

2.2.1. Equilibrium equations 
The equilibrium equations make two groups:

−− the equilibrium equations of nodes, which relate the 
element’s nodal internal and external forces, acting 
in the nodes;

−− the equilibrium equations of the bending elements, 
which relate the element’s nodal internal forces 
and the external force acting on the element. These 
equations are formed only for the elements subject-
ed to distributed loads, i.e. for the element of the 

second type. The equilibrium of the internal and 
external forces of these elements is described by the 
equation (Kalanta 2007):

	
  k = 1, 2,…, r,

where  – the intensity of the element’s distributed load-
ing. This equation is derived from the differential equilib-
rium equation of the bending element

	
considering the bending moment function (1).

Then system of equilibrium equations for all finite 
elements and nodes are:

	 	 (3)

where  denotes the vector of the internal 
forces of the structure, composed of the elements’ vector of 
the internal forces   – the vector of the external forces.

The matrix [A] of the equilibrium equations’ ratios 
can also be formed using the equilibrium equations of the 
finite elements

	   k = 1, 2,…, r, 

where the relation between the elements’ reactions  
(Fig.  2) and the internal forces  (Fig. 1) is described. 
With reference to the principal of virtual displacements 
(Kalanta 1995) the formula for calculating the matrix of 
the equilibrium equations’ ratios is derived as follows:

	 , 

where  – a quasi-diagonal matrix, diagonally 
filled with the blocks of matrices  k = 1, 2,…, r [C] – 
the matrix of the compatibility equations  of the 
displacements of the elements’ nodes  
and the global displacements  of the structure’s nodes. 

Fig. 1. Finite elements: a – the element under tension or 
compression; b – the second-order element or the element 
under bending and tension or compression

a

b
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The matrices of equilibrium equations for the elements con-
sidered in this paper (Fig. 1) are as follows (Kalanta 2007):

	

	

2.2.2. Geometrical equations
Geometrical equations 

	 	  (4)

are derived by applying the principle of virtual forces. 
These equations relate the strains of the bars  to the dis-
placements of the nodes . Physical equations  
can be inserted into the equations’ system (4) and the geo-
metric equation takes the form:

	 	  (5)

where  and

	
	 (6)

flexibility matrix of the kth element;  – flexibility ma-
trix of the infinitesimal element. The ratios of matrix  

are calculated by the formula  

where 
 

for tension or compression, while 

 
for bending;  – the inertia moment of cross-

section, E – the elasticity modulus. For the element under

tension or compression  while for the element

under bending and tension or compression 

	

2.2.3. Strength and stability conditions
Strength condition of the jth section of the element under 
bending and tension or compression is described by the 
inequality:

	
	  (7)

where  are the cross-section area and the resistance 
moment; R – the design strength of the material (taking 
into account the reliability factor). Multiplying it by 

 
the 

following strength condition is obtained:

	
or

	
 	 (8)

where  – the design axial force, 

determining the load-bearing capacity of the elastic cross-
section. These strength conditions are verified at all finite 
element nodes and in the critical sections of the elements 
subjected to distributed loading and where the bending mo-
ment is the highest. The coordinate of the critical section 

	

is determined from the condition  while

the bending moment of the critical section is

	

where  

Fig. 2. Finite element reactions of positive directions

a

b
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The strength conditions of all elements of the struc-
ture are described by the inequality:

	 	  (9)

where  – the vector of the cross-section areas (design 
variables). Non-zero elements of the matrix  are equal 
to the products RAj. 

Furthermore, the bars under compression have to 
satisfy the stability inequality:

	
  or 	  (10)

The buckling ratio  of the bars under central and 
non-central compression is determined according to the 
design code STR2.05.08:2005. The stability conditions of 
all elements under compression are described by a similar 
inequality:

	
	  (11)

Non-zero elements of the matrix  are equal to the 
products 

By combining the conditions (9) and (11) the follo-
wing inequality, describing the strength and stability con-
ditions of the structure, is derived:

	 	  (12)

2.2.4. Stiffness conditions

	 	  (13)

are described by the constraints of the structure’s displace-
ments of the truss nodes  where  is the maximal 
value of the ith admissible displacement.

3. Mathematical model and solution algorithm  
of optimization problem

3.1. Mathematical models
A bar structure subjected to the load cases v = 1, 2, … , p 
is considered. Bars are designed based on the set  of steel 
rolled profiles. Let us describe the cross-section areas of 
the bars by the vector  whereas the loading, internal 
forces and displacements of the vth load case are described 
by the vectors , , . It is clear that all these vectors 
must satisfy the equilibrium and geometric equations, as 
well as strength, stability and stiffness conditions of the 
structure, likewise the requirements of the profiles’ as-
sortment and structural requirements. Thus, based on the 
described dependencies, the minimal volume (weight) 
design problem of the elastic structure is described by a 
mathematical model as follows:

	
	  (14)

when

	 	 (15)
	 v = 1, 2, … , p.

The main unknowns in this model are the vectors 
 k  =  1,  2,…,  r where h  is the vector of the 

truss height parameters hj;  are structural cons-
traints of cross-sections. Since the geometry of trusses is 
defined only partially, the vector of the bars’ lengths , 
static equations’ matrix  and flexibility matrix of ge-
ometric equations  are also unknown. The su-
bmatrix  of the matrix  depends on the 
areas of the bars’ cross-sections because it involves the 

ratios , while the submatrix  of the matrix

 depends on the buckling ratios , the values of 
which are the functions of the elements’ slenderness (for 
the elements under bending, these are also the functions 
of the internal forces). Thus, the objective function, equili-
brium, geometric equations, as well as strength and stabili-
ty conditions in the problem (14)–(15), are nonlinear. The 
cross-section areas  should be taken from the set  of 
cross-sections, i.e. from the profiles’ assortment. Therefore, 
a mathematical model of the optimization problem is the 
problem of nonlinear discrete programming. The height 
parameters hj of the structure and cross-sectional areas of 
the bars Aj, which would correspond to the minimal volu-
me (weight) of the structure and satisfy the requirements 
of strength, stiffness and stability, should be found.

By eliminating the internal forces

  and geometric equations,

tions, the model can be rearranged to make the following 
optimization problem:

	
	  (16)

when

 	

(17)

	 v = 1, 2, … , p,

where  is the 

global stiffness matrix of the structure.
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3.2. Solution algorithm
The number of the unknowns in the mathematical model 
(16)–(17) is smaller than that found in the problem (14)–
(15). However, the degree of nonlinearity of the constraints 
(17) is higher, therefore, the solution of the problem (16)–
(17) is more complicated. For this reason, the optimal so-
lution should be sought applying the mathematical model 
(14)–(15). 

These functions are used for the cross-section inertia 
moment I and the factor c 

	 	  (18)

describing their relation with the cross-section area A, 
where  are the ratios, depending on the 
type of the profile. The values of these ratios can be de-
termined by using the regression, i.e. by applying the 
least squares method. For example, for the IPE-type pro-
file,   
However, for the IPEA-type or other profiles these ratios 
are different.

Since it is hardly possible to describe the buckling 
ratios by the analytical (18) or other functions (herewith 
relating these ratios with the unknowns) the problem is 
solved by the iterative method. In the first iteration, any 
buckling ratio values  are chosen. In other itera-
tions, the values of the buckling ratios are determined de-
pending on the slenderness values of the elements under 
compression, which are calculated for the cross-sections 
selected from the profiles’ assortments according to the ar-
eas’ values , which were used in the previous iteration. 
The buckling ratios of non-centrally compressed elements 
are calculated, taking into account the eccentricity of load 
(Kala et al. 2010; Merkevičiūtė et al. 2006). The require-
ments of the profiles’ assortment are satisfied by applying 
the method of branch and bound (Kalanta 2007). The it-
erative process is completed when the values of the vectors

 obtained in iteration, match the specified values.

4. Optimization results of the simple truss

The elastic truss subjected by two load cases is given 
(Fig. 3):

load case 1: F1,1 = 100 kN, F1,2 = 100 kN, F1,3 = 100 kN;

load case 2: F2,1 = 100 kN, F2,2 = 70 kN, F2,3 = 40 kN. 

All truss elements are designed using the hot 
rolled steel pipes, steel S275 and the elasticity modulus 
E = 2.10 × 105 MPa. The admissible vertical displace-ment 
of the middle node is  m.

The design strength of the steel  

250 MPa. The bars of the truss are modelled by using the 
first-order finite elements k = 1, 2,…, r (Fig. 1a). The sym-
metric truss is designed with the optimization parameters 

 and  (Fig. 3). The aim is to find the op-
timal truss height, the optimal layout of the bars and areas 
of bar cross-sections, while minimizing the expenditure of 
steel, when the truss is subjected only to the first or only 
to the second load case or to both load cases. Moreover, 
all calculations are performed with the evaluation of the 
height constraints,  m and  m. The 
optimization results are compared to the data, obtained by 
using the finite element software Autodesk Robot Structur-
al Analysis. 

The results obtained for the truss subjected to 
the first load case are as follows: the truss height values 
are   m and  the cross-section areas are 
A1  = 11.08 × 10–4 m2 (Ø101), A2 = A3 = A4 = 8.616 × 10–4 m2 
(Ø88.9), A5 = 0, A6 = 0, A7 = 8.616 × 10–4 m2 (Ø88.9). Steel 
expenditure V = 37888.34 × 10–6 m3. Optimal scheme is 
shown in Fig. 4.

The same truss height and cross-sections areas values 
were obtained for the truss subjected by both load cases.

Results for the second load case: truss height – h1 = 
1.649 m, h2 = 0.312 m, h = h1 + h2 = 1.961 m cross-sections 
A1 = 12.52 × 10–4 m2 (Ø114.3), A2 = 10.67 × 10–4 m2 (Ø88.9), 
A3 = 8.616 × 10–4 m2 (Ø88.9), A4 = 5.74 × 10–4 m2 (Ø60.3), 
A5 = 3.733 × 10–4 m2 (Ø48.3), A6 = 0, A7 = 6.004 × 10–4 m2 
(Ø76.1). Steel expenditure is V = 34261.43 × 10–6 m3. Opti-
mal scheme is presented in Fig. 5.

Fig. 3. Truss design diagram

Fig. 4. The optimal truss structure for the first load case and for 
both the first and the second load cases

Fig. 5. The optimal truss structure for the second load case
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Similar optimal diagrams were obtained in design-
ing 2  m and 1.5  m high trusses. The values of steel ex-
penditure for both load cases are 41 220.0 × 10–6 m2 and 
45 956.0 × 10–6 m2, respectively. The analysis of the results 
shows that steel expenditure is increasing when the truss 
height is decreasing. Thus, the conclusion of prof. Rabi-
novich (1933) that for a single load case a statically deter-
minate truss is optimal, is confirmed. With reference to 
two load cases, the statically determinate truss is obtained 
(Fig. 4), though, in general, it could be statically indeter-
minate as well.

The comparison of the optimization results with the 
results obtained by using the software Autodesk Robot 
Structural Analysis is presented in Figs 6–8.

5. Optimization results of bridge truss

The bridge truss with the span of 24 m and the continuous 
top chord (Fig. 9) is considered. The truss is subjected to the 
equally distributed dead load p1 = 12 kN/m and live load 
p2 = 13 kN/m. The design strength of steel is R = 250 MPa, 
while the elasticity modulus is E = 2.10 × 105 MPa. The 
aim is to find the optimal designs for three load cases:

−− the whole bridge is subjected to the dead and live 
loads; thus, p = p1 + p2 = 25 kN/m; 

−− the whole bridge is subjected to the dead load, while 
the live load acts only on the half of the bridge;

−− with reference to the first and second load cases.
The cross-section of the top chord is designed using 

the IPE profiles, while other bars are designed using hot 
rolled pipes. The admissible vertical displacement of the 
middle node is  m.

The top chord is modeled by four second order ele-
ments (Fig. 1b), while other bars are modeled by elements 
under tension or compression (Fig. 1a). The symme-
tric truss is designed, optimal parameters are  and 

 (Fig. 10). Optimal truss height values  and 
 are defined for the cases without height constraint and 

with height constraint  Optimization results are 
presented in Table 1. Steel expenditures for different truss 
heights and load cases are shown in Figs 10–14. 

Table 1. Optimization results of the bridge truss

Truss 
height, 
10–2 m

Load 
case L.C.

h1, 
10–2 m

h2, 
10–2 m

h, 
10–2 m

A1, 
10–4 m2

A2, 
10–4 m2

A3,  
10–4 m2

A4, 
10–4 m2

A5, 
10–4 m2

V, 
10–6 m3

I 469.80 146.64 616.44 45.94 17.17 12.52 17.17 21.38 181 202.8
unlimited II 509.53 179.72 689.25 62.61 12.52 15.39 12.52 15.39 212 619.4

I, II 358.83 179.35 538.18 72.73 17.17 15.39 10.67 17.05 234 668.4
I 387.84 101.74 489.58 53.81 18.86 15.17 15.17 15.17 193 750.4

h ≤ 500 II 386.64 109.53 496.17 72.73 13.18 11.08 11.08 11.08 220 948.9
I, II 372.25 125.80 498.05 72.73 18.86 15.39 11.08 17.05 236 796.3

I 330.35 69.65 400 62.61 20.33 18.86 15.17 10.67 215 188.1
h ≤ 400 II 318.44 77.03 395.47 72.73 15.17 15.17 10.67 8.616 223 717.2

I, II 303.62 92.17 395.79 72.73 21.38 18.86 11.08 11.08 237 316.7

Fig. 8. The expenditure of steel, when h = 1.50 m:  – Matlab; 
 – autodesk robot structural analysis

Fig. 6. The expenditure of steel, when h = 2.911 m

Fig. 7. The expenditure of steel, when h = 2.0 m
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The analysis of the results shows that, independent of 
the truss height, steel expenditure for the first load case 
(symmetric loading) is lower for the top chord and higher 
for the bottom chord and webs, compared to the load case 
of non-symmetric loading (the second load case). Further-
more, it can be seen from the pictures of steel expenditu-
re that the demand for steel is increasing for chords and 
decreasing for webs, when the truss height is decreasing. 
In the case of non-symmetric loading, the mean intensity 
of loading is lower, compared to the symmetric load case; 
however, the non-symmetric load case is more dangerous 
because steel expenditure is higher.

6. Conclusions

1. The optimization problems of elastic trusses modelled 
by using the equilibrium finite elements are formulated 
and solved as nonlinear problems of discrete mathematical 
programming. Since the height of a truss is unknown, the 
objective function, equilibrium and geometric equations, 
as well as strength and stability conditions, are nonlinear.

2. Computational research has shown that the math-
ematical model of the optimization problem allows for de-
termining the optimal cross-sections of the truss bars, as 
well as the optimal height and layout of the truss bars sub-
jected to several load cases and taking into account steel 
design code requirements.

3. It is shown that the optimal truss, composed only 
of the bars under bending or compression, should have the 

Fig. 9. Design diagram of the bridge truss

Fig. 10. Comparison of steel expenditures in m3 for different 
load cases

Fig. 11. Comparison of steel expenditures in m3 for different 
truss height cases

Fig. 12. Steel expenditures in m3 for chords and webs with 
reference to both load cases

 Fig. 13. Steel expenditures in m3 for chords and webs with 
reference to the first load case

Fig. 14. Steel expenditures in m3 for chords and webs with 
reference to the second load case
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statically determinate structure. The optimal height values 
are h1 = 2.911 m and h2 = 0 m for the truss subjected to 
both load cases.

4. The computational research has shown that steel 
expenditure for the truss of symmetric geometry and load-
ing is smaller for the top chord and larger for the bottom 
chord and webs, compared to steel expenditure in the case 
of non-symmetric loading. Moreover, the demand for steel 
is increasing for chords and decreasing for webs, when the 
truss height is decreasing.

5. It has been shown that the design of trusses, based 
on the use of the suggested method, is more economical 
compared to the design based on the use of the finite ele-
ment software Autodesk Robot Structural Analysis.
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