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1. Introduction

The actual behavior of the structure may not be reflected 
by finite element model (FEM) and it may require updat-
ing. The difference between the results obtained by the 
FEM and those obtained by carrying out the experiments 
is reduced by model updating. It involves the modification 
in the properties like mass, stiffness and damping param-
eters.

Many studies are available for the model updating of 
the bridges. Experiments were conducted on a reinforced 
concrete bridge and the FEM was updated by El-Borgi 
et al. (2005) to reduce the difference between the results 
obtained by FEM and the experiments.

A FEM of a real arch bridge under use was updated 
by Jaishi et al. (2007). The parameters were updated in 
such a manner that the natural frequencies obtained from 
the updated model became quite close to the experimen-
tal values. A methodology was suggested by Bayraktar 
et al. (2009) to update the FEM for an arch bride using 

ambient vibration tests. The analytical modeling was car-
ried out using three dimensional finite element models. 
The peak picking method in the frequency domain was 
used for the modal identification. Updating of the FEM 
led to a good agreement between the natural frequencies 
obtained by numerical method and experiments. Similar 
studies were reported recently by Bayraktar et al. (2010) 
for a reinforced concrete box girder bridge constructed by 
balanced cantilever method. A good agreement was found 
between natural frequencies and mode shapes after model 
updating.

Feng et al. (2004) proposed a method to build baseline 
models for bridge performance monitoring using neural 
networks. The method was applied to a pre-stressed post 
tension box girder bridge. The natural frequencies of the 
baseline model were found to be in good agreement with 
the reality than those of the model before the updating. 
Lee et al. (2005) have also proposed a technique of neural 
network based damage detection for bridges. The modes 
shape ratios before and after damages are used as input 
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for the networks. The training is carried out for reducing 
the effect of errors in baseline finite element model. Kim 
et al. (2009) proposed an iterative training neural network 
strategy for static model identification of a fiber-reinforced 
polymer bridge deck. The methodology was applied to the 
example bridges and was found to be very effective in sys-
tem identification of the fiber-reinforced polymer bridge 
deck.

The modal flexibility has been found to be more sen-
sitive to damage by Zhao and Wolf (1999) than natural fre-
quencies and mode shapes. It has been shown by Lenett 
et al. (1999) that condition of structures is established quite 
accurately by carrying out modal analysis and evaluating 
their flexibility. An inverse relationship exists between the 
flexibility and square of modal frequencies. The higher 
frequency modes therefore have a very small contribution 
to the flexibility matrix and may be neglected. The flex-
ibility matrix may be represented accurately by only small 
number of modes. This feature of flexibility matrix has 
therefore been used extensively for detecting damages in 
the structures (Aimin, Golinval 2005; Bernal, Gunes 2002; 
Gao, Spencer 2002; Jaishi, Ren 2006; Jaishi et al. 2007; Koo 
et al. 2008; Pandey, Biswas 1994, 1995; Patjawit, Kanok-
Nukulchai 2005; Stutz et al. 2005; Toksyo, Aktan 1994). 
Wang et al. (2008) discussed about the vibration-based 
damage detection with structural modal characteristics. A 
novel technique, requiring the use of vibration data, was 
suggested for locating the damage and also for evaluating 
the condition of the already known damage.

A simplified approach has been adopted in this pa-
per for model updating of steel box-girder bridge using the 
virtual static deflections based on modal flexibility matrix. 
The approach is based on the conversion of dynamic mod-
el to static model. The deflections used for the model up-
dating are estimated from the modal flexibility matrix. As 
stated above, a small number of lower modes are sufficient 
for accurate evaluation of flexibility matrix. An optimiza-
tion process is adopted for the model updating. Dynam-
ic tests have been performed on a two span continuous 
bridge for the verification of the proposed approach.

2. Modal flexibility estimation from dynamic test

The flexibility matrix ideally consists of flexibility coef-
ficients which are deformations corresponding to static 
sources of unit magnitude acting at the coordinates as in 
this case the error is reduced to imprecision of measure-
ments. However, in some cases, the application of static 
forces to produce a displacement field that is measurable 
with sufficient accuracy is quite a difficult task and flexibil-
ity may be synthesized from the vibration measurements 
in those cases. When the flexibility is extracted from vibra-
tions, the error due to truncation is to be accepted because 
all the modes are not obtained from experimental data.

Consider the response of a structure described by the 
following linear equations of motion:

	 ,	  (1)

where M – the mass matrix; C – the damping matrix; K – 
the stiffness matrix; x – the displacement vector; f – the 
force vector.

Assuming proportional damping and taking into ac-
count the fact that the mode shapes are orthogonal with 
respect to mass and stiffness matrix the following equation 
is obtained.

	 , ,	 (2)

where  – the generalized mass matrix which has only 
diagonal components;  – the generalized stiffness matrix 
which has only diagonal components; F = [f1, f2, ..., fn] – 
the mode shape matrix. The modal frequencies are denot-
ed as . The matrix of the square of the modal frequen-
cies, , comprising of  on main diagonal is obtained as:

	 . 	  (3)

Combining Eqs (2) and (3) gives

	 .  	 (4)

Then
	 ,  	 (5)

where  – the diagonal matrix which is comprised of mass-
normalized indices. Substituting Eq (5) into Eq (4) and 
keeping in mind that  is a diagonal matrix, yields

	  or .	 (6)

The stiffness matrix is now given from Eq (6) as:

	 . 	 (7)

Taking into account that the flexibility matrix is in-
verse of stiffness matrix, i.e. G = K–1, the flexibility matrix 
obtained from Eq (7) is:

	 .  	 (8)

If the origin of the physical coordinate system is es-
tablished as a reference, the orthogonal property for mass-
normalized mode shapes is expressed as:

	 . 	 (9)

It has been demonstrated by Doebling (1996) that the 
stiffness and flexibility matrices based on the modal data 
are derived from Eqs (7) and (8):

	 , 	 (10)
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	 ,
	

   (11)

where fi means the ith mode shap;  means the ith 
modal frequency;  means the modal stiff-
ness matrix, and n means the number of degrees of free-
dom. Analytical model may be used or the experiments 
may be carried out to obtain the mode shapes and the 
natural frequencies.

It is observed from Eq (10), that the modal contri-
bution to the stiffness matrix varies with the frequen-
cy, and an increase in frequency causes increase in the 
modal contribution to stiffness matrix. The accurate 
estimation of stiffness from the experiments requires 
the measurement of all modes or at least the high fre-
quency modes. In practice, in any experimental survey 
of complex structures, it is difficult to measure all the 
modes, particularly the higher modes. However, Eq (11) 
shows that the modal contribution decreases with in-
crease in frequency and for higher values of frequen-
cies, the modal contribution is insignificant. Therefore, 
the flexibility matrix is obtained reasonably accurately 
by considering only the small number of lower frequen-
cy modes (Gao, Spencer 2002).

3. Identification method by deflections

Suppose there is a deflection u arising from an arbitrary 
load f. The deflection may be obtained using the flexibility 
matrix, G as

	  	 (12)

In this study, deflections are obtained from Eq (12) 
by applying Positive Bending Inspection Loads (PBILs). A 
PBIL which is defined as a load or a system of loads which 
guarantees positive bending moments in the inspection 
region makes the deflection change sensitive to structural 
changes so that the optimization is carried out rapidly. Ex-
amples of PBILs are shown in Table 1 for a two span con-
tinuous beam used in the experimental study. To update a 
FEM, the following cost function is used based on deflec-
tions obtained by modal flexibility.

	  ,	  (13)

where  – the cost function; E – Young’s modulus; 

 – bending rigidity at the ith beam element;  – 
experimental deflections under two PBILs (f1 and f2) ob-

tained by modal flexibility;  – cor-
responding deflections from the FEM.

To update the model is to estimate the representa-
tive stiffness of the steel bridge. The optimization toolbox 
in MATLAB is employed which use the cost function as 
Eq (13) as the objective function to perform the model 
updating (an optimization process actually). The process 
of model updating method is a process of optimization 
(Fig. 1).

4. Experimental study and model updating
A two-span continuous box-girder bridge was casted in 
the laboratory for performing the experiments. The spans 

Table 1. Schematic representation of PBILs (Koo et al. 2008)

Beam types Inspection regions PBILs Definitions of inspection loads

2-span 
continuous beam

1st span-region
2nd span-region

f 1

–f 1

(f 1)

where 
 

Intermediate  
support-region**) f 2*)

(f 2)

where 

*) f 1 and f 2: Span-region inspection load and intermediate support-region inspection load.
**) Intermediate support-region may cover 1/4 of the span regions on both sides of the support.



256	 J. Cui et al. Structural Model Updating of Steel Box Girder Bridge Using Modal Flexibility Based Deflections

were of equal length with the length of each span being 
8.0 m and 1.0 m overhang for each span. The bridge was 
comprised of total nine segmental boxes. The boxes were 
connected by the bolts. Fig. 2 shows the cross-section of 
the bridge along with the experimental set up. Nineteen 
accelerometers were evenly placed along one side on the 
upper surface of the box-girder as shown in Fig. 3. The 
impact loads at the regular time interval of four minutes 
were applied to vibrate the bridge. The measurement of ac-
celeration responses was obtained at the sampling rate of 
200 Hz. The measurements were carried out a number of 
times (eighteen times) to ascertain the intact. Efforts were 
made to keep the temperature constant during the experi-
ments of about total six hour duration so as to avoid the 
thermal effects. 

The modal flexibility matrices were constructed using 
Eq (11) based on the mass-normalized mode shapes and 
natural frequencies obtained from the acceleration mea-
surements. The deflections under the PBILs f1 and f2 were 
obtained for 19 sets of the acceleration measurements. The 
results were scaled so as to keep the absolute max value 
as 1.0. As seen in Fig. 4, the eighteen results almost coin-
cide with each other and the deviation levels were less than 
±0.0008, which indicates the excellent repeatability of the 
estimated deflections.

A FEM was developed for the bridge. The model con-
sisted of beam elements of one meter length. The rubber 
pads below the supports were modeled as the point springs. 
The cross-section properties were converted in the equiva-
lent properties for use in the FEM. The area of the equiva-
lent section was 0.0166 m2 and the moment of inertia was 
0.0002751 m4. The material was modeled as steel.

The MATLAB software was used for coding the FEM 
and its optimization tool box was used for the updating of 
the model through optimization. The optimized values at 
the final step during the optimization process are shown 
in Fig. 6. The value of the cost function decreased from 
11.215 to 5.206 after the optimization process shown in 
Fig. 7, concluding that the optimization process worked 
effectively.

As there were totally 18 records for the acceleration 
measurements, optimization processes were performed 
18 times to compare the accuracy of the estimated stiff-
ness of the steel bridge. Fig. 8 shows the mean values and 
standard deviations of the stiffness of 18 beam elements, 
which is the FEM for the test steel bridge. From the graphs 
it is noted that the standard deviations are small compared 
with the mean values. Thus, it could be concluded that the 

Fig. 1. Flowchart of the identification method based on 
deflections

Fig. 2. Experimental setup and cross-section dimensions (Koo 
et al. 2008)

Fig. 3. Accelerometer layout of experimental test
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Fig. 4. Mean deflections and their deviation level under PBILs before identification

Mean of scaled deflections under f1 Mean of scaled deflections under f2

Deviations of scaled deflections under f1 Deviations of scaled deflections under f2

Fig. 5. FEM of the steel bridge

Fig. 6. Optimized values at the final step

experimental results are acceptable and the estimated stiff-
ness is reasonable.

The deflection obtained by the experiment at the sen-
sor locations and the deflection obtained by the FEM be-
fore updating corresponding to these locations are shown 
in Fig. 9. Similarly, the deflection obtained by the experi-
ment at the sensor locations and the deflection obtained by 
the FEM after updating corresponding to these locations 
are shown in Fig. 10. The values shown in the Figs 9 and 
10 are the average values both for the FEM and experi-
ments. Fig. 11 shows the mean deflections and their devia-
tions which are obtained from FEM analysis. The results 
are scaled in a way that the absolute max value is 1.0. The 
identified deflections almost coincide with each other and 
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Fig. 8. Mean values and standard deviations of the estimated 
stiffness

Fig. 7. The cost function values during optimization process

Fig. 9. Comparison of deflections under PBILs before identification

Comparison of deflections under f1 Comparison of deflections under f2

Fig. 10. Comparison of deflections under PBILs after identification

Comparison of deflections under f1 Comparison of deflections under f2
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the deviation levels are less than ±0.008, showing the ex-
cellent analytic deflections after identification.

It is observed from Fig. 10, that the deflections ob-
tained by the FEM after updating are in good agreements 
with the deflections obtained by the experiments. This 
shows that the proposed method which updates the FEM 
by the deflections is effective and may be used for obtain-
ing a baseline model of the bridge based on dynamic data 
obtained by experiments. This method is better since it re-
quires the use of deflections as compared to other methods 
which require natural frequencies and mode shapes.

5. Conclusions and discussions

The important conclusions based of this paper are as fol-
lows:

A FEM updating method has been presented for steel 
box girder bridges. The method utilizes virtual static def-
lection estimated by the modal flexibility matrix which, in 
turn, is formed by using the modal parameters, such as na-
tural frequencies and mode shapes.

Fig. 11. Mean deflections and their deviation level under PBILs after identification

Mean of scaled deflections under f1 Mean of scaled deflections under f2

Deviations of scaled deflections under f1 Deviations of scaled deflections under f2

The proposed method has been validated by per-
forming the dynamic tests on a two-span continuous 
box girder bridge. The numerical deflections obtained 
after using the proposed method for model updating 
are in close agreements with the experimental results. 
This shows that the presented method enables to carry 
out efficiently and accurately the model updating of the 
structures.

The presented model updating method may be exten-
ded in the future for condition assessment and damage de-
tection in bridges.
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