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1. Introduction

For a long time, due to their effective behaviour and ex-
cellent architectural appearance, suspension bridges 
have been employed for carrying out long and average-
sized spans (Ryall et al. 2000; Troyano 2003). By reason 
of dominating tension stresses, suspension bridges assure 
covering the longest spans in the world (Gimsing, Geor-
gakis 2012; Strasky 2005). Recently, two-span, or the so-
called single pylon suspension bridges have been intro-
duced. The cables of these bridges are anchored either in 
the foundation or a stiffening girder. The latter ones are 
also called self-anchored bridges (Kim et al. 2002; Zhang 
et al. 2013). The cables of suspension bridges are manu-
factured from high strength steel spiral or parallel wires 
the flexural stiffness of which is equal to zero (Gimsing, 
Georgakis 2012; Kulbach 2007). It should be stressed that 

such cables are subject to specific anti-corrosion protec-
tion, and their constructions joints, from the point of view 
of the structure, are sufficiently complex (Betti et al. 2005; 
Bloomstine, Sorensen 2006; Nakamura, Suzumura 2009; 
Xu, Chen 2013; Yanaka, Kitagawa 2002), which in turn, 
increases bridge construction and exploitation costs. 

High deformability is one of the most serious di-
sadvantage of suspension bridges (Gimsing, Georgakis  
2012; Jennings 1987; Katchurin et al. 1971) and is mainly 
determined by the kinematic displacements of the suspen-
sion cable caused by asymmetric and local traffic loadings 
rather than by the elastic deformations of the cable (Juo-
zapaitis, Norkus 2004; Kulbach 2007). It should be noted 
that the kinematic displacements of the asymmetrically 
loaded cable directly depend on its initial sag and do not 
rest on the length of its span (Jennings 1987; Juozapaitis, 
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Norkus 2004). The stiffening girder is the main structural 
element that allows ensuring the required stability of the 
initial form of suspension bridges (Gimsing, Georgakis 
2012; Ryall et al. 2000). This classical structural element 
of stabilization is not accepted as highly effective, becau-
se, under relatively high asymmetric loadings, the mass 
of the girder of high rigidity is required (Grigorjeva et al. 
2010; Katchurin et al. 1971; Lewis 2012; Wollman 2001). 
Also, some other structural measures that allow reducing 
kinematic displacements are known (Gimsing, Georgakis 
2012; Katchurin et al. 1971; Strasky 2005). However, some 
of those are quite complex or not effective enough from 
a technical-economic point of view (Jennings 1987). Mo-
reover, not all available stabilization methods for the initial 
form of suspension bridges can be proper to single pylon 
bridges.

To reduce the kinematic displacements of suspension 
bridges and to stabilize their initial form, a structured de-
cision has been suggested, following which, the so-called 
rigid cables instead of the common ones are applied (Gri-
gorjeva et al. 2010, 2015; Juozapaitis et al. 2006, 2010). The 
cables having a similar structure are designed using hot 
rolled or welded steel profiles. The forms of their cross-
section may differ from I-beams to rectangular or round 
tubes and chutes (Grigorjeva et al. 2010; Juozapaitis et al. 
2010, 2013). Both the constructions joints of such rigid ca-
bles are simple and reliable. Contrary to the cables made 
of high strength wires, dangerous local strains are not pro-
duced (Fürst et al. 2001; Gimsing, Georgakis 2012; Prato, 
Ceballos 2003; Strasky 2005). The cross-sections of rigid 
cables are remarkably resistant to the impact of corrosion. 
To achieve higher technical efficiency, high strength steel 
is recommended for producing rigid cables.

A number of works focus on analysing the beha-
viour of traditional suspension bridges, i.e. the bridges 
with flexible cables (Clemente et al. 2000; Cobo del Arco, 
Aparicio 2001; Gimsing, Georgakis 2012; Katchurin et al. 
1971; Kim, Thai 2010; Wollman 2001; Wyatt 2004). Thus, 
it should be emphasized that for calculating internal for-
ces and displacements of suspension bridges, numerical 
methods are widely applied (Nevaril, Kytyr 2001; Wang 
et al. 2002). However, applying them not always assists 
in adequately evaluating the sequence of the suspension 
bridge and installation.

The number of works on the analysis of two-span (sin-
gle pylon) suspension bridges is not that high. The methods 
for performing calculations on such innovative suspension 
bridges with rigid cables have not been put into practice 
yet. A few publications on the analysis of the behaviour of 
one or three-span suspension bridges have been prepared 
(Grigorjeva, Kamaitis 2015; Juozapaitis et al. 2010, 2013). 
Thus, an important point is the analysis of the behaviour of 
the innovative two-span suspension bridge with the rigid 
cable and the preparation of its calculation method.

The paper examines calculations on the innovative 
single pylon suspension bridge with the rigid cable under 
symmetric loadings. The proposed methodology evalua-
tes the sequence of installing the rigid cable. Analytical 
expressions estimating the internal forces and displace-
ments of such a bridge are presented thus discussing the 
sequence of iterative calculation. 

2. Analysis of the two-span suspension bridge   
with the rigid cable

2.1. Specificities of calculating and designing   
the innovative suspension bridge
A constructional scheme of the innovative two-span sus-
pension (single pylon) bridge is typical of the structure of 
a classical bridge with a flexible cable. The bridge, instead 
of the flexible cable, uses the rigid one, i.e. a cable having 
flexural stiffness EcJc ≠ 0. The other structural parts of the 
suspension bridge remain the same and include stiffening 
girders, pylons and hangers (Fig. 1).  

The main problem of suspension bridges, including 
the single pylon ones, is relatively high deformability under 
asymmetric or local loadings. The displacements of such 
bridges effectively reduce applying innovative decisions one 
of which, as mentioned above, is the employment of the 
so-called rigid cables instead of conventional flexible ones. 
Rigid cables are known as having axial EcAc ≠ 0 and flexural 
stiffness EcJc ≠ 0. The value of flexural stiffness EcJc is select-
ed according to eligibility for limit state conditions.

The introduced innovative cables use hot-rolled or 
welded steel profiles having the I-beam and box cross-sec-
tion (2010; Grigorjeva et al. 2010). It should be noted for 
producing such rigid cables, high strength steel is highly 
recommended.

Fig. 1. The structure of suspension bridge

http://www.tandfonline.com/action/doSearch?Contrib=Kamaitis%2C+Z


The Baltic Journal of Road and Bridge Engineering, 2015, 10(3): 269–275 271

Obviously, the cross-sectional area of rigid cables, 
compared to the conventional spiral or parallel wire cable, 
may be slightly higher, but the cost will be significantly low-
er. On the other hand, compared to the suspension bridge 
with flexible cables, the total mass of new bridge support-
ing structures (cable and stiffening girder) will be lower, be-
cause the rigid cable, similarly to the stiffness girder, takes 
over asymmetric and concentrated loadings. Moreover, tak-
ing into account the operating costs for the anti-corrosive 
protection and maintenance of flexible cables made of par-
allel wires, the efficiency of applying rigid cables increases.

Emphasis should be placed on two main options 
of forming (installing) the rigid cable (Juozapaitis et al. 
2010). In the first case, the cable acquires flexural stiff-
ness (EcJc  ≠  0) from the very beginning of forming the 
bridge and takes over both permanent g and contempo-
rary v loadings through the processes of tension and flex-
ure. In the latter case, the cable gains flexural stiffness after 
installing the bridge rather that at the very beginning. In 
this case, the cable takes over permanent loadings through 
tension only while the temporary ones as tension and as a 
flexural element. In the latter case, the general loadings of 
the rigid cable are significantly reduced.

The behaviour of such suspension bridges is qualita-
tively similar to that of the bridges with conventional flex-
ible cables, and for calculating them; the same well known 
assumptions are applied (Gimsing, Georgakis 2012; 
Katchurin et al. 1971; Wollman 2001).

2.2. Calculating the two-span suspension bridge  
under permanent loading
A calculation scheme for the innovative two-span (single 
pylon) suspension bridge is presented in Fig. 2.

For making calculations on the bridge, the second 
more rational case of forming a rigid cable is examined, 
i.e. the bearing cable, as an absolutely flexible one, takes 

over the whole permanent loading g and, as a rigid cable 
(EcJc ≠ 0), temporary loading vc. It should be emphasized 
that, in this case, the stiffening girder takes only a part of 
temporary loading (vb).

The scheme for the loaded single pylon suspension 
bridge shows that two main structural elements (cable and 
stiffening girder) are, for the sake of clarity, relatively frag-
mented (Fig.  2). The general case, when the lengths be-
tween spans are not equal (ll ≠  lr), has been investigated. 
The endings of both stiffening girders and bearing cables 
of such a bridge are pinned supported.

2.2.1. The right span of the bridge
The spans of the suspension cable of the single pylon bridge 
are installed at different levels, i.e. the cables of both spans 
are inclined. It should be emphasized that the calculation 
of the inclined specified cables applying local coordinates 
is much more complex (Juozapaitis, Daniūnas 2005). The 
angle of the tilt of the cables is slight enough, and there-
fore, for the sake of simplicity, the inclined cables in global 
ordinates will be calculated. Next, the right and left parts of 
the bridge will be examined. At the first stage of formation, 
the rigid cable is affected by permanent loading g making 
an impact on the bridge.

The equilibrium condition for the right side (marked 
with symbol r) cable is defined by Eq (1):

 , (1)

 , (2)

where Hr0 − a horizontal component of cable tension 
under loading g; zr0(xr) − the initial curve of the cable 
(quadratic parabola is accepted), calculated from the line 
connecting upper and lower spans (Fig. 2); Mrg(xr) − the 

Fig. 2. Schemes for the calculations on the suspension bridge
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moment caused by permanent loading g in the girder of 
the analogous span. The horizontal component of the ten-
sion force of this flexible cable is calculated as follows:

 , (3)

where fr0 − the initial sag of the right flexible inclined ca-
ble in the middle of the span (xr = 0.5lr), calculated from 
the line connecting upper and lower supports. It should 
be emphasized that the value of the tensile strength of the 
inclined flexible cable acting along the line will be higher 

and equal to .

2.2.2. The left span of the bridge
Under symmetric loadings, the calculation of the left side 
of the bridge (marked with symbol l) mainly does not differ 
from that of the right side. The initial state of this cable, under 
permanent loading g is defined using an analogical equation:

 , (4)

 , (5)

where Hl0 − a horizontal component of cable ten-
sion force under load g; zl0(xl) − the initial curve of 
the cable calculated from the line connecting the up-
per and lower supports of the cable (Fig.  2). Mlg(xl) − 
the moment caused by permanent loading g in the girder 
of an analogous span (ll).

The horizontal component of the tension force of the 
flexible left cable is calculated as follows:

 , (6)

where fl0 − the initial sag of the right flexible inclined cable 
in the middle of the span (xl = 0.5ll), calculated from the 
line connecting the upper and lower supports of the ca-
ble. In parallel with the right cable, the value of the tensile 
strength of the inclined left cable acting along the line will 

be equal to .

2.2.3. Selecting composed parameters for the two-span 
suspension bridge
Striving for the equilibrium of the initial state of the two-
span suspension bridge, the parameters of the structural 
elements of separate spans must be accurately selected, be-
cause, under permanent loading, the following condition 
must be additionally satisfied:

 . (7)

Consequently, dependence between the values of the 
sags of the right and left flexible cable is obtained:

 . (8)

Eq  (8) shows that a greater difference between the 
lengths of bridge spans results in a large difference in the 
values of the initial sags of the right and left cable. In the 
case condition (Eq (8)) is not satisfied, under loading 
g = const., the top of the pylon should experience horizon-
tal displacements, which, in turn, would cause adverse dis-
placements of kinematic origin.

It must be emphasized that received condition 
(Eq (8)) is for the case when pylons are pined supported 
to the foundation. 

2.3. Calculation on the two-span suspension bridge 
under permanent and temporary loadings
The chapter examines the symmetric loading of the bridge 
when the temporary loading of the same intensity acts on 
both spans, i.e. when v = vr = vl. As mentioned above, for 
examining the behaviour of this bridge, the second ver-
sion of forming the cable is accepted. Under permanent 
loading g only, the initial equilibrium state of both flexible 
cables of the spans is defined by Eqs (1)−(5). According 
to the second case of installation, uniform flexural stiff-
ness EcrJcr = EclJcl = EcJc ≠ 0 is provided for flexible cables 
applying certain structural measures. Thus, under the ac-
tion of variable loading, cables are rigid. A deformation 
scheme for the single pylon bridge affected by permanent 
g and variable v loadings is presented in Fig. 2. It should 
be emphasized that temporary symmetric loading v act-
ing over the entire length of the bridge will distribute be-
tween rigid cables and the stiffening girder proportion-
ally to their flexural rigidity. Moreover, variable loading 
vc on rigid cables will spread axial forces Hr and Hl as well 
as bending moments mcr(xr) and mcl(xl) inside them. It 
should be noted that, in the meantime, stiffening girders 
will take the remaining part of this variable loading vb that 
will cause only bending moments mbr(xr) and mbl(xl) in-
side them.

2.3.1. Calculation of the right span of the single pylon 
suspension bridge
As mentioned above, when the entire bridge is under sym-
metric temporary loading v, the rigid cables of both spans 
and stiffening girders will take vertical displacements 
wcr(xr); wcl(xl); wbr(xr); wbl(xl) (Fig. 2). It should be remem-
bered that rigid cables will take all permanent and a part of 
temporary loadings g + vc, and stiffening girders – only a 
part of variable loading vb. As for the right span, a condi-
tion for displacement equality of the stiffness girder and the 
rigid cable is written as:

 . (9)

The condition is correct if is accepted that suspension 
deformations have no influence on internal forces and dis-
placements (Juozapaitis et al. 2010). Next, the behaviour of 
the stiffening girder and the rigid cable, under temporary 
loading, will be separately examined.
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Considering Eq  (9), the condition of the moment 
equilibrium of the stiffening girder of the right span will 
be obtained:

 , (10) 

 , (11)

where EbJb − the flexural stiffness of the stiffening girder; 
Mb,r(xr) − the moment caused by variable loading (vb).

The equilibrium for the right rigid cable is as follows:

 , (12)

where mcr(xr) = –EcJc⋅wr²(xr) − the bending moment in the 
rigid cable; Mc,r(xr) − the moment passed from permanent 
g and variable vc loadings in the girder of an analogous span.

Eq (12) shows that both tensile strength and the ben-
ding moment will appear in the rigid cable.

A combination of the stiffening girder and the rigid 
cable for the purpose of common behaviour results in the 
following for equilibrium:

 

            .  (13)

Eq (13) defines a general case of calculating the sin-
gle pylon suspension bridge. In case the cable was flexi-
ble, i.e. EcJc = 0, the equilibrium condition of a standard 
single span suspension bridge from condition Eq  (13) 
would be obtained (Juozapaitis et al. 2010; Wollman 2001). 
Eq  (13) shows that the displacements of the innovative 
suspension bridge with the rigid cable will be smaller, be-
cause the general flexural rigidity of the bridge increases 
ErJr = EbJb + EcJc. 

The application of the concept of the fictitious displa-
cement of the rigid cable (Moskalev, Popova 2003) points 
to the following solution: 

 , (14)

 , (15)

 , (16)

where  − a fictitious displace-
ment of the right rigid cable in the middle of the span            
( );  – the general parameter of the slerderness 
of the right side of the bridge; λ – function of the slerder-
ness parameters krlr and krxr.

The analysis of Eq (14) shows that the solution is 
analogous to the already known formula calculating 

single rigid suspension elements (cables). Thus, the be-
haviour of the innovative suspension bridge is adequate 
for the behaviour of single rigid suspension elements. 
The flexural stiffness of the suspension bridge is made 
of stiffening girders and a sum of the flexural stiffness 
of the rigid cable. Thus, another valid conclusion can be 
drawn. Changes in the values of the flexural stiffness of 
the stiffening girder and rigid cable, i.e. their ratio, under 
the constant general stiffness of the bridge, may result in 
the adjustment of tension in the above mentioned struc-
tural elements.

For example, if variable loading on the right rigid cable 
vc is known, its horizontal tension force is calculated as:

 . (17)

The above equation clearly indicates that the fictitious 
displacement may assist in establishing the horizontal ten-
sion force of the rigid cable analogically to the flexible one, 
what allows decreasing the volume of iterative calculations.

Eq (17) displays that the horizontal tension force of 
right rigid cable Hr depends on fictitious displacement 
∆ffic,r while the latter, in turn, depends on horizontal ten-
sion force (Eq (14)). Therefore, an additional equation 
linking these two values is required:

 , (18)

where sr − the length of the right with additional loading; 
s0r − the initial length of the right cable; ∆sel,r − the elonga-
tion of the elastic right cable.

The expression of the deformation of the inclined ri-
gid cable will be written down following the assessment 
of a possible horizontal displacement of pylon surface ∆lr:

 . (19)

Member ψ(krlrαr) in Eq (19) evaluates the impact of 
flexural stiffness on the deformation of the inclined ca-
ble. It should be noticed that, in this expression, member 
αr = cos–2φr specifies the parameter of the slenderness of 
the rigid cable moving from local to global coordinates. 

The calculation of the rigid cable is performed with 
the help of gradual approximation. The values of the main 
unknown ∆ffic,r of the first step of iterative calculation is 
accepted as those of an absolutely flexible cable.

 . (20)

Next, according to Eq (17), the values of spreading 
force as well as that of slenderness parameter  are esta-
blished. Subsequently, calculation is made using Eqs (18) 
and (19). The condition of iterative calculation is expres-
sed as follows:
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 , (21)

where . 
Upon finishing calculations with the required accu-

racy ε, the values of the fictitious displacements of cable 
∆ffic,r  and its horizontal tension force Hr will be known. 
Then, the real vertical displacement of rigid cable wr(xr) 
and its bending moment mcr(xr) will be calculated. The 
bending moment of the stiffening girder in any cross-
section can be established accordingly to the known ex-
pression  while its displacement, 
considering the accepted assumption, will be equal to the 
displacement of the rigid cable. The moment of the stiffen-
ing girder acting in the middle of the span, when its dis-
placement ∆fbr is known, can be estimated according to 

the following simple expression .

It should be noted that the application of the concept of 
the fictitious displacement of the rigid cable, compared 
to other calculation methods for suspension bridges al-
lows significantly reducing the intensity of iterative cal-
culation. On the other hand, this concept admits simple 
transformation to performing calculations on the standard 
suspension bridge with the flexible cable thus taking into 
account that EcJc = 0. The process of iterative calculation 
remains the same.

2.3.2. Calculations on the left span of the single pylon 
suspension bridge
The calculation of the structures of the left span of the sus-
pension bridge is analogous to that of the structures of the 
right span. Only the geometrical parameters of the stiffen-
ing girder and rigid cable change. Thus, the initial equi-
librium conditions of Eqs (12), (13), and (17) and their 
solutions Eq (14) will be analogical. Thus, the equations 
for calculating the horizontal tension force of the left rigid 
cable Eq (22) and its displacements Eq (23) is written as 
follows: 

 , (22)

 , (23)

 ,  (24)

 , (25)

where  − a fictitious displacement
of the left rigid cable in the middle of the span ( ); 

 – the general parameter of the slenderness of the left   
of the bridge; λ − function of the slerderness parameters klll 
and klxl.

The equation for the coherence of the deformations of 
the left rigid cable is as follows:

 , (26)

 , (27)

 , (28)

where sl − the length of the left cable with additional load-
ing; s0l − the initial length of the left cable; Δsel,l − the elas-
tic elongation of the left cable.

The length of the left cable with added variable loa-
ding vc is equal to:

 . (29)

The calculation of the structures of the left span of the 
bridge is performed similarly to that of the right side. The 
path of gradual approximation is analogous. 

3. Concluding remarks

The paper discusses the behaviour of the innovative two-
span (single pylon) suspension bridge and presents calcu-
lations on symmetric loadings. The paper considers a gen-
eral case when the spans of the bridge are of a different 
length. The paper analyses the sequence of construction 
phase such a bridge when the rigid cable is formed adding 
permanent loading. This allows reducing the initial strains 
on the rigid cable. The equations for calculating vertical 
displacements and internal forces of the rigid cable and 
the stiffening girder of the right and left spans of the in-
novative suspension bridge are presented. The concept of 
the fictitious displacement of the rigid cable may assist in 
significantly reducing the extent of the iterative calculation 
of the single pylon suspension bridge. The paper deals with 
a possibility of adjusting the internal forces and displace-
ments of the rigid cable and stiffening girder in such a sus-
pension bridge. The values of the ratio of the flexural rigid-
ity of these structural elements have the highest impact. 
It should be emphasized that the obtained expressions 
of calculations define the general calculation case of the 
symmetrically loaded two-span (single pylon) suspension 
bridge. These expressions can be easily adapted to mak-
ing calculations on common single pylon bridges with the 
flexible cable considering that the flexural stiffness of the 
rigid cable is equal to EcJc = 0. It should be also underlined 
that rigid cables allow reducing the general displacements 
of the suspension bridge.
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