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1. Introduction

In order to comply with level two and level three standards 
of analysis accuracy as per NCHRP Project 1-37A:2004 
Guide for Mechanistic-Empirical Design of New and Re-
habilitated Pavement Structures, the major proportion of 
computations, related to pavements, starts with the prepa-
ration of large inputs datasets (Zeghal, El Hussein 2008). 
Highway engineering requires advances in computer sci-
ence (Koch et al. 2015), thus, sources for datasets is a criti-
cal starting point for modelling road pavements using the 
theory of artificial neural networks (Kim et al. 2009) or 
another theories which make possible to analyse the in-
complete data (Luo 2011). 

 The artificial neural network (ANN) is increasing-
ly popular in successful identifying of pavement layers 
moduli of elasticity (Saltan et al. 2011). ANN analysis is 
also well-suited for unbound layers (Gopalakrishnan et al. 
2009; Park et al. 2009), which, often for purposes of back 
calculation and nonlinear material characteristic, is easily 
considered. One of the key accomplishments in ANN re-
garding back calculation procedures, is the elimination of 

seed parameters, thus, making identification of algorithms 
is less prone to finding local minima. The possibility of 
using artificial intelligence (AI) in analysing risk profile 
of building pavement structures (Ceylan, Gopalakrish-
nan 2011) facilitates building hybrid models, which take 
into account both, stochastic processes concerning time-
varying pavement parameters and uncertainty, related to 
poor build quality of pavement structure. AI looks like a 
promising supplement tool for risk assessment among 
another available techniques of multiple criteria decision 
making modelling (Tamošaitienė et al. 2013).

The application of interval-based uncertainty tech-
niques to ANN regression model (Pierce et al. 2008), the 
Bayesian-trained networks as a superior fit to training 
data (Er et al. 2012), selective combination techniques 
as reported in (Ahmad, Zhang 2009), and, finally, the 
algorithms that reduce the error of prediction by sub-
sequently inserting connections and neurons (Dieterle 
et al. 2003), are the examples of few research directions 
which are the attempts of quantifying and controlling the 
ANN results.
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Regarding the situation when a pavement fatigue life 
is determined and based on classic fatigue criteria (Yu et al. 
2012; Yu, Zou 2013), the priority is an accurate diagnosis 
of pavement parameters. The varying pavement thickness 
directly affects a pavement fatigue life and it is critical for a 
pavement behaviour over time.

The workload, required by pavement management 
system (PMS) mountainous tasks, constrains empirical 
data collection stage. Therefore, it is critical to efficient use 
of that data in every instance (Jorge, Ferreira 2012; Zhang, 
Gao 2012). Research studies of maximising utilisation of 
“inputs” have to be the priority. There are many other au-
thors (Bilodeau, Doré 2014; Pasquini et al. 2013) who dis-
cuss the methods of using different range of information 
(compared to many PMS standard procedures), concer-
ning falling weight deflectometer (FWD), based on bearing 
capacity of pavement analysis.

2. Inventory data in PMS diagnosis

The efficient throughout of the entire lifecycle mainte-
nance of a pavement structure requires rational support 
of making the rehabilitation decisions. The robust solu-
tions which are developed around the PMS is the com-
plex maintaining tool in a road infrastructure engineering. 
However, a key element of PMS identifies the technical 
condition of the pavement. The structure of this identifi-
cation in the PMS has a different character but, in most 
cases, the manager will be interested in features that are 
illustrated in Fig. 1.

Taking into consideration only the method of assess-
ing the structural capacity, there is a large group of road 
authorities in Poland, who control this feature limiting 
themselves only to the verification of maximum pavement 
deflection. It is assumed that by increasing the scope of 
the analysis of the results already stored in PMS databases, 

compared to the most frequently used standards, a better 
quality model of road maintenance programs, as the degra-
dation of pavement models (which are based on the mecha-
nistic approach, Fig. 1 – fatigue life estimation), is achieved.

3. The aim of the study

Due to the sheer scale of PMS, the pavement structure 
identification is limited to selected sections, and collection 
of this type of data is forsaken. A large obstacle in the de-
velopment of advanced models of PMS in Poland is a wid-
er range of parameters that are usually needed to estimate 
quantities as fatigue life or residual pavement strength. 
Therefore, in this work, the main attention was paid to the 
usage of numerical methods that effectively complement 
this gap. Firstly, ANN which is in the case of PMS databas-
es, is a natural choice because the enormous input data re-
sources are available for the training sets. Secondly, using a 
hybrid of ANN capabilities with routine pavement evalu-
ation under PMS substantially expands the range of possi-
ble pavement evaluations. When it is decided to use ANN 
for purposes of pavement layer identification,  it  should 
be taken into consideration  that these methods are prob-
lematic due to the uncertainty caused by potential “pertur-
bations”, which occur (under actual PMS conditions they 
do) in assumptions underlying the training set. This pa-
per attempts to use a certain empirical relationship which 
is employed with success of verifying diagnostic accuracy 
of ANN method. The following hypothesis is tested, from 
ANN result set comprising identified asphalt layer thick-
ness information on pavement test section, it is possible to 
automatically exclude the majority of those values which 
further down the line generate of highly erroneous values 
of pavement fatigue life.

4. Elements of ANN training set structure

4.1. Characteristics of created PMS based database

All research study results (for ANN training set) come 
from the routine pavement evaluations carried for purpos-
es of a pavement management system. Considering that 
their format is not dictated by strict requirements relevant 
to certain databases, using those datasets with ANN has 
required building a database. The general statistics of used 
results set is presented in Table 1.

Thickness and structure of pavement layers have been 
identified  and based on specimens from pavement coring 
in both, bituminous layers and another courses (Fig. 2). 

Fig. 1. Sample diagram of properties that are usually considered to assess the technical condition of pavement in PMS

Table 1. Statistical values of training set elements

Statistics
Thickness

Temperature Deflection
AC Subbase

h, cm T, °C d0, μm
Mean 23.6 30.4 +13.5 208
Median 23.6 30.0 +15.6 196
Standard 
deviation 5.0 8.1 +5.7 73

Minimum 14.8 10.0 +1.0 54
Maximum 37.0 56.0 +19.6 1026
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The database has been built using pavement evalua-
tion datasets from Polish road sections. It holds 4078 re-
cords, among which are pavement deflection, temperature 
data and location data. There are 209 instances of loca-
tions with known pavement structure. Those locations 
match places where falling weight deflectometer (FWD) 
testing was carried out. The frequency of impulse loading 
applied by FWD deflectometer has been taken as approx 
1/(2·t) ≈ 18 Hz, where t stands for  rise-time force. It has 
been assumed a constant across the databases for all de-
flection datasets.

The entire pavement cross-section has been surveyed 
by ground-penetrating radar in places, where boreholes were 
made. The additional information on pavement layer struc-
ture has been obtained by means of non-destructive testing.

4.2. ANN training set structure details

4.2.1. Architecture selection
Following a multi-stage process, the architecture of neu-
ral network (NN) has been designed and based on multi-
layer perceptron (MLP) network and radial basis function 
(RBF) network. The dataset has been divided into three 
subsets: training, testing and validation – 70%, 15% and 
15% respectively. MLP network has proved most usefully 
for the training process, since their correlation coefficient 
was almost 1. The correlation coefficient was calculated ac-
cording to the Eq (1):

	 ,	 (1)

where rXY – dimensionless correlation coefficient of train-
ing set and result set from ANN calculations; cov(X,Y) – 
covariance of training set X and result set from ANN cal-
culations Y; SDX and SDY – standard deviation of training 
data sets respectively  X and Y.

Neural networks have been trained only for structures 
with single hidden layer. Measurements, captured by geo-
phones mounted on the FWD deflectometer in two config-
urations, have been used as inputs. All deflection data has 
been utilised in first configuration. In second configuration 
deflection data captured only by the first three geophones 
has been used (distance from loading axis 0 mm, 300 mm, 
600 mm), because values of deflections, measured by first 

three geophones,  mainly depended on pavement layer stiff-
ness properties. The input data also consisted of bitumi-
nous pavement layer temperatures and loading, applied by 
FWD deflectometer’s loading plate.  The qualitative variable 
with values 0, 1, 2 has been introduced to analysis. Those 
values have been assigned to pavement designs: rigid pave-
ment, flexible pavement and “mixed” pavement respectively 
(Fig. 2). In total, 4 different input and output datasets have 
been used as training sets for ANN (Table 2).

4.2.2. Optimisation of ANN architecture
The optimisation routine for SSN architecture has been set 
from 1 to 30 input neurons in hidden layer. Each of the four 
configurations of the training set has been tested on 10 000 
epochs. The standard mean square error measure has been 
used as an error function. For preliminary weight optimi-
sation, the conjugate gradient method has been employed 
with reduction factor 0.001 for the hidden layer and output 
layer. The following activation functions have been tested: 
linear, logistic, hyperbolic tangent, exponential, sine, stand-
ard exponential function. Eligible for further analysis have 
been networks which correlation coefficient satisfied the 
condition rXY∼1 (details are given in point 4.2.3).

4.2.3. Optimisation of ANN weights, network training
MLP network architectures 5–9–1, 5–7–1, 9–11–1, 5–12–1, 
9–10–1 have been selected for further analysis. The weights 
have been selected through multiple sampling. Know-
ing architecture and activation function, used for network 
training, has been algorithm Broyden–Fletcher–Goldfarb–
Shanno (Gopalakrishnan 2010). Weight initialisation has 

Bituminous layers, 
h = 24.5 cm

Bituminous layers, 
h = 14.8 cm

Bituminous layers, 
h = 25.5 cmPaving stone layer, 

h = 10.0 cm

Crushed aggregate base 
course, 
h = 18.0 cm

Cement stabilised  
course, h = 6.0 cm

Crushed aggregate base course,  
h = 19.0 cm

Cement course,  
h = 30.0 cm

Fig. 2. Example specimen of:  a – flexible pavement; b – “mixed pavement”; c – semi-flexible pavement

Table 2. Configurations of input and output layers tested with 
ANN structure

State Input layer Output 
layer

1 T, σ, d0, d1, d2 h
2 T, σ, d0, d1, d2, type of structure h
3 T, σ, d0, d1, d2, d3, d4, d5, d6 h
4 T, σ, d0, d1, d2, d3, d4, d5, d6, type of structure h

Note: T – temperature, °C; σ − applied stress, MPa; dn − value of deflec-
tion (nth geophone), mm; h − total bituminous layer thickness (or bitu-
men-binder bases) of the pavement in built database, cm.

http://en.wikipedia.org/wiki/Charles_George_Broyden
http://en.wikipedia.org/wiki/Roger_Fletcher_%28mathematician%29
http://www.columbia.edu/%7Egoldfarb/
http://rutcor.rutgers.edu/%7Eshanno/
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been pseudorandom, using the following breakpoint con-
dition: number of epochs ≤10 000 and Δε < 0.000001 after 
20 epochs. In case of MLP networks, the correlation coef-
ficient for hidden layer has been assumed 0.0001 and for 
output layer 0.001.  The best results, in terms of maximum 
value of Pearson correlation coefficient, have been obtained 
for MLP 5–9–1 network architecture (Table 3).

Best choice network has  been set to 5 input neurons 
(d0, d1, d2, T and σ) and 9 hidden layer neurons. Ultima-
tely, based on analysed results, obtained for tested activa-
tion functions, the logistic and linear function has been 
selected to normalise input and output dataset respectively 
(MLP 5–9–1 log-lin).

5. Empirical testing of the independent road sections

5.1. Test section S1
The data, selected to verify trained neuron network, has 
come from studies investigating test sections with both, 
non-reinforced and geosynthetics-reinforced flexible 
pavement structures. The test section S1 (Fig. 3) has  been 
built using standard non-reinforced, flexible pavement.  
The remaining sections have different types of reinforce-
ment. For purposes of this study, those remaining sections 
(S2–S7) have been reduced to sections with “perturbation” 
pavement structures, compared to ones providing ANN 
training set. The test section pavement has consisted of the 
following three asphalt concrete (AC) layers:

−− 5 cm surface course with a maximum nominal ag-
gregate size of 12.8 mm,

−− 6 cm wearing course with a maximum nominal ag-
gregate size of 16 mm,

−− 7 cm base course with a maximum nominal aggre-
gate size of 22 mm.

AC layers have been spread on the mechanically stabi-
lised base course of 20 cm thick with a maximum nominal 
aggregate size of 31.5 mm. Test section pavement layer thick-
ness has been measured every 1 m by pavement cut-outs.

Total asphalt layer thickness (Fig. 4) as per the analysis 
ranged is between 14.0 ≤ hAC ≤ 18.4 cm. The mean value of 
total bituminous layer thickness (or including tar-bitumen 
binder, historically laid underlying bases) of the training set 
satisfies the condition 14.8 ≤ hAC ≤ 37.0 cm. It is noticed 
that measurements of asphalt pavement layer thickness of 

Table 3. Values of selected statistics – ANN testing

ANN Correlation Covariance MAPE*
For training set containing research results pertaining to flexible 
pavement, mixed pavement and semi-flexible pavement
MLP 5–9–1 logistic-
linear (log-lin) 0.688 12.81 13.87%

MLP 5–9–1 logistic-
logistic (log-log) 0.696 13.23 15.52%

For training set containing flexible pavement research results
MLP 5–9–1 logistic-
linear (log-lin) 0.675 11.70 12.20%

MLP 5–9–1 logistic-
logistic (log-log) 0.675 11.82 12.15%

Note: * – mean absolute percentage error.

Fig. 3. View of the Section 1

Fig. 4. Thickness of bituminous layers
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actual pavement testing sections, considerable thickness 
variations have been recorded at individual test points 
(numbers from 1 to 36)  and compared to values assumed 
in the project. The maximum thickness deficit, identified at 
several test points of the test section, has been 3.0 cm.

Bituminous layers’ complex stiffness moduli of the 
test section (histograms are shown in the Fig. 5) have been 
determined experimentally by employing the Four Point 
Bending Beam (4PBB) testing methodology. Test beam 
specimens compliant with EN 12697-26: 2012 Bituminous 
Mixtures – Test Methods for Hot Mix Asphalt – Part  26: 
Stiffness, have been cut out from layers of asphalt plate 
specimens (Fig. 3b). Experiments have taken place in tem-
perature 15 °C and frequency 10 Hz.

Bituminous-aggregate mixture composition has been 
identified from specimens taken in-situ. Physical proper-
ties factored in further analysis are given in the Table 4.  

The base course and subgrade mechanical properties 
of pavement test section have been determined by deflection 
testing of mechanically stabilised aggregate base course. 
Benkelman Beam (BB) and lorry with axle load of 80 kN 

have also been used for the experiment (Fig. 6a). The base 
course and subgrade of considered pavement have been 
modelled by elastic half-space. The moduli of elasticity have 
been determined for the following boundary conditions:

−− no horizontal forces acting at z = 0 → τ = 0;
−− flexible plate loading

	 ,	 (2)

where σ – stress, Pa; z – vertical ordinate, m; r – distance 
from loaded axis, m; a – plate radius, m; q – load, Pa; k – 
integral coefficient, Jn – nth Bessel function.

Using the general form of the integral of vertical dis-
placements of elastic material:

	 ,	 (3)

where w – vertical displacement, m; ν – Poisson coeffi-
cient,  – Laplacian, Φ – stress function, E – modulus of 
elasticity, Pa.

Fig. 5. Complex modulus value distribution |E*| (T = 10 °C, f =10 Hz) determined experimentally (4PBBT) for beams cut-out from 
pavement test section asphalt layers

Table 4. Selected AC physical properties factored into fatigue life analysis

HMA
Bitumen content Vb, Air volume content Va, Density ρ,

% by volume % by weight % by volume g/cm3

Surface course 13.4 5.1 3.4 2.766
Wearing course 12.0 4.6 4.4 2.740
Base course 9.2 3.8 7.2 2.558

Fig. 6. Testing conditions

a – deflections obtained by using BB results on an aggregate base course (with corresponding values                       
of moduli of elasticity at subsequent test points located on its surface
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Modulus of elasticity for a base course with under-
lying subgrade has been computed using the relationship:

	 ,	 (4)

where D – a flexible plate diameter, m.
Test points on the surface course have been located 

where values of elastic deflections of test section base cour-
se and subgrade have been known (Fig. 6b). One FWD test 
run has consisted of six vertical loadings with the target 
value of 50 kN.

5.2. Test section S2
An appropriate dataset for testing deflections’ basin pa-
rameters (DBPs) (Bilodeau, Doré 2012), and especially, 
Surface Curvature Index (SCI), Base Damage Index (BDI) 
and Base Curvature Index (BCI) has  also been prepared. 
This dataset comprises of FWD deflection data and param-
eters of pavement cores, and borehole specimens (Fig. 7a). 
Coring and drilling have been carried out each 500  m.  
The subject to testing was the road section with a diversi-
fied flexible pavement.  The analysed test section has been 
30 km long. FWD deflection basin parameters SCI, BDI 
and BCI have been determined. The following relationship 
has been a subject to in-depth visual examination:

	 ,	 (5)

where d0 – deflection from first FWD geophone, μm; hAC – 
total thickness of pavement bituminous layers, m; SCI, 
BDI, BCI – deflection basin parameters, mm.

Further, the regression curve was produced which 
was then used to study “perturbations” with a relation to 
the training set. A sufficient coefficient of the determina-
tion (r2 ≥ 0.95) is displayed in Fig. 7b. It is obtained for the 
power function as given by (6):

	 ,	 (6)

where a – regression parameter.
The obtained data has been generated by FWD tes-

ting in temperature range of mid-depth AC layers (or tar-
bitumen binder layers) from 15 °C to 30 °C.

Further analysis shows that the regression curve has 
properties useful for investigating perturbations, occur-
ring in analyses using ANN identification data.

6. Verification of trained ANN structure

At the next stage, the MLP 5−9−1 model has been verified.  
The data underlying verification has been:

−− results of in-situ and laboratory study, carried out 
for an independent (in relation to ANN training 
set) flexible pavement test section (Fig. 3);

−− FWD deflection data and pavement structure data 
independent of ANN training set (test section S2);

−− current Polish fatigue life criteria.

6.1. AC thickness control

The confrontation concerns the thickness have estimated 
on the basis of a trained network and independently meas-
ured thicknesses in test section S1. The values of a root 
mean square error (RMSE) and MAPE errors (Table 5) 
have been computed by:

−− sections with “perturbations” and
−− sections consistent with assumptions underlying 
the training set (through the same flexible pave-
ment structure).

In order to use the maximum number of real data 
from experimental and in-situ tests, it has been assu-
med that the equivalent modulus for a base course and 

Fig. 7. FWD deflection basin parameters testing

Table 5. Errors when evaluating by ANN the total bituminous layer thickness from testing section S1

ANN
Test points along test section

1–9 10–36 1–9 10–36
RMSE, % MAPE, %

MLP 5–9–1 logistic-logistic (log-lin) 1.84 9.5 1.50 7.68
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subgrade is known across all 36 test points, throughout the 
analysed section (based on BB measurements calculation).

6.2. Fatigue life comparison

6.2.1. Fatigue file criteria used in the paper
A range of fatigue criteria has been used for purposes of 
this paper to describe:

−− limit state related to cracks on a surface course (acc. 
to well-known relationship of Asphalt Institute):

 ,	 (7)

where N1 – total repeated applications of loads before 20% 
cracked road pavement or 50% decrease in modulus of 
stiffness, 100 kN equivalent single axle load (ESAL); Va – 
volumetric air void content in AC, %; Vb –volumetric bi-
tumen content in AC, %; ε1 − value of horizontal tensile 
strain; |E*| – complex modulus of AC, MPa.

−− limit state related to structural deformations (Asphalt 
Institute):

	 ,	 (8)

where N2 – total repeated applications of loads before the 
critical structural deformation in pavement structure of 
12.5 mm, 100 kN ESAL; k and m – experimental coeffi-
cients respectively equal k  =  0.0105 and m  =  0.223; εc – 
value of vertical compressive strain on subgrade surface.

6.2.2. Result of calculations
The fatigue life N for pavement test section has been calcu-
lated using MLP network, based on identification of bitu-
minous layer thickness. The following configurations have 
been considered:

1)	 N (h_36), a fatigue life analysis based on bitumi-
nous layer thickness, measured at all 36 test points along 
test section (reference configuration);

2)	 N (h_Mean), a fatigue life analysis, assuming 
mean bituminous layer thickness, is known (reference 
configuration);

3)	 N (h_MLP log-lin), a fatigue life based on analy-
tical bituminous layer thickness of pavement test section ‒ 
ANN employed (MLP 5–9–1 log-lin).

The fatigue life results of calculations are presented 
in Fig. 8. Pearson correlation coefficient has been used to 
measure the correlation between fatigue life calculated and 
based on actual thickness and identified using MLP (Ta-
ble  6). The strength of correlation between each set and 
reference configuration has been assessed both, for non-
reinforced test section (test points from 1 to 9) and rein-
forced sections (test points from 10 to 36).

Having the reviewed results of calculations and re-
search studies presented in this paper, the conclusion is the 
biggest drawback of ANN, a limited possibility to verify 
the data is produces. This problem is particularly evident 
in PMS, due to a sheer scale of workloads required to carry 

out all necessary measurements and road maintenance. 
The possibility to use the aforementioned Eq (5) for con-
trol purposes is presented further on.

6.3. Controlling the results of ANN application, 
perturbed section
Seeing the general Eq (5), constant for independent flex-
ible pavement test sections, the formula where hAC is re-
placed by an identified value of hACANN i.e. total thick-
ness identified by ANN is also correct.  The regression 
curve (Fig. 9a) is included in the analysis, in an attempt to 
obtain some information on the pavement sections, which 
ought to be skipped due to potential “perturbations” to as-
sumptions underlying the training set. Consequently, it is 
the decreasing diagnosis of accuracy of estimated pave-
ment remaining life for potential purposes of PMS. An-
alysing the differences between individual values of both 
sets is critical. The first set z1 contains maximum values 
of deflections d0i i.e. z1 = (d01, d02, ...,d0i, d0(n−1), d0n) and 
the second set z2 contains maximum values of deflections 
calculated for hACANN, where for both cases „i” have 
the values within range from 1 to n = 36 (n is the num-
ber of test points along test section). The last stage involves 

Fig. 8. Analytical fatigue life data for a pavement structure test 
section (N1, N2 – fatigue life of asphalt layers and subgrade 
respectively)

Table 6. Values of the correlation coefficient between sets            
of a fatigue life data calculated for considered configurations

Fatigue life 
correlation set

Pearson correlation coefficient
AC Subgrade

fatigue life criteria,
N1 N2

Test points along test section
1–9 10–36 1–9 10–36

N (h_36)
N(h_MLP log-lin) 85 69 95 75

N (h_Mean)
N (h_MLP log-lin) 91 56 98 70
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calculating differences ∆z, while comparing them against 
the assumed specification limit of error ε, as given by (9):

	 .	 (9)

Automating this procedure by a computer code 
causes some bituminous layer thickness, identified by 
ANN on test section S1 (for an assumed normalised value 
ε = 30) to be removed (Fig. 9b).

The data displayed in Fig. 9b shows that the majori-
ty of test points is set in conditions significantly deviating 
from assumptions underlying the training set (they are lo-
cated on different configurations of reinforced pavement, 
i.e. the “perturbations” zone). Hence, conclusions formu-
lated on the back of RMSE and MAPE error analysis, ma-
tch the perturbation verification algorithm discussed in 
this paper.

7. Results and discussion

The study results concerning flexible, “mixed” and semi-
rigid pavements (Fig. 2) have been used to create the da-
tabase for purposes of dataset training neuron networks. 
An independently selected flexible pavement test section 
has been used to verify the built model. A road section 
has been selected to introduce “perturbation” into results 
produced by neuron networks, which individual pavement 
sections (as opposed to results in the ANN set training) 
have been built using both, non-reinforced and geo-syn-
thetics reinforced pavement.

 It is noticed that values of bituminous layer thickness 
identification error concerning test section S1 (RMSE and 
MAPE) have been ranging from 2% to 10%. The values of 
errors regarding test points from 1 to 9 are considerably 
lower compared to errors in remaining test points, and they 
do not exceed 2%. Natural tendency to accept ANN identi-
fied thickness occurs provided that 10% errors are accept-
able. The results of fatigue life calculations are alerting.

The conclusion that RMSE and MAPE errors are 
greater than about 2% decrease diagnostic accuracy of 
pavement fatigue life is drawn from analysing the corre-
lation strength between ANN identified fatigue life and 
fatigue life as per measured thickness. The results are dif-
ferent in an order of magnitude, thus, practically disquali-
fying such identification. The value analysis of correlation 
coefficient shows that most correlated (r ≥ 0.85) are value 

sets of fatigue life calculated by MLP 5–9‒1 log-lin neuron 
network for pavement test section at test points numbered 
from 1 to 9 (flexible pavement without geosynthetics, no 
“perturbations”). At test points numbered from 10 to 36 
(reinforced pavement, referred to as “with perturbations”), 
correlation was significantly weaker (0.75 ≥ r ≥ 0.56).  It is 
assumed that fatigue life was calculated and based on such 
thickness values, RMSE and MAPE errors that are greater 
than 5% and indicative of highly inaccurate bituminous 
layer thickness identification.

Furthermore, it was attempted to find the empirical 
relationship for improving pavement diagnostic accuracy 
by eliminating erroneous results produced by ANN. High 
uncertainty, caused by numerous “perturbations” affect-
ing assumptions underlying training set, is inherent to soft 
computer techniques employed to identify pavement layer 
thickness. The paper suggests to develop a hybrid method-
ology using the empirical relationship between maximum 
deflection, bituminous layer thickness and deflection ba-
sin parameters (SCI, BDI and BCI). This methodology en-
abled elimination of most values from the result set of bi-
tuminous layer thickness identified by MLP 5‒9‒1 log-lin, 
which potentially generated highly erroneous values of the 
fatigue life for analysed pavement test section.

8. Conclusions

This paper proved that the research study data, collected 
by pavement management system on a cyclical basis, is a 
source of additional and unused knowledge. Motivated by 
cost-based optimization of empirical data collection, the 
tools for verifying and controlling of artificial values, iden-
tified in neural network, have to be developed.

The accuracy of interpreting routine pavement evalu-
ation data, gathered under pavement management system, 
was substantially improved by using the presented meth-
odology in combination with artificial neural networks. 
Based on a conducted experiment, the following conclu-
sions were drawn:

1. The research study results concerning independent 
flexible pavements were the part of an artificial neural 
network training set, in line with assumptions to the expe-
riment. The value of a fatigue life correlation coefficient 
calculated for non-reinforced flexible pavement sections 
(“no perturbations flexible pavement structure”) is ≥0.85, 
and both, root mean square and mean absolute percentage 

Fig. 9. ANN application
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errors are <2%. Hence, the identification of bituminous 
layer thickness of independent pavement test section using 
artificial neural network is credible.

2. An assumption was made not to include reinforced 
pavement data in the training set database containing test 
results for independent pavements. Then, the value of a fa-
tigue life correlation coefficient for reinforced pavement 
test section is ≤0.75, and root mean square and mean ab-
solute percentage errors are >7%. Those parameters prove 
that the identification of an artificial neural network per-
tains to road section inconsistently with assumptions un-
derlying the training set.

3. The fatigue life calculations, based on artificial neu-
ral network identified thickness, proved that, in case, when 
a root means square error exceeds 7%, the value of an ana-
lytical fatigue life is greater than an actual fatigue life by 
order of magnitude. Hence, in order to efficiently use the 
artificial neural network, since in practice, in-depth moni-
toring, all pavement parameters, in pavement manage-
ment system databases they are virtually impossible meth-
ods, have to be used.

4. Based on the study of “perturbations” affecting 
neural network training sets, as per pavement manage-
ment system practice, it was observed that proposed meth-
odology, using deflection basin parameters, is the key ele-
ment of an artificial neural network-based identification 
results verification procedure, which does not generate ex-
tra costs of additional empirical data.

5. Geosynthetics pavement reinforcement affects de-
flection data in case of inferior subgrades. It is also proven 
by the result set for a reinforced pavement, which was not 
included in neural network training set. This means that 
the artificial neural network is not satisfactorily accurate 
to precisely identify geosynthetics-reinforced, bituminous 
layer thickness solely based on falling weight deflectometer 
data for the same type pavement, without the reinforce-
ment. Mechanistic calculations using that thickness data 
are inaccurate.

6. The study of experiment results also revealed that the 
best configuration for purposes of determining bituminous 
layer thickness of an artificial neural network was a multi-
layer perceptron neural network set to architecture. The 
form was: input data layer which consisted of temperature, 
applied stress and deflections at distances of 0 mm, 300 mm 
and 600 mm from the centre of the load, hidden layer with 
nine neurons and thickness as an output data. The set of 
input-output activation functions was correctly configured 
respectively as the logistic function and the linear function.

In summary, the condition necessary to improve in-
terpretation of bituminous layer thickness determination 
data by a hybrid of artificial neural network and routine 
pavement evaluation data generated by pavement mana-
gement system, is the monitoring of potential perturba-
tions to training set. This methodology requires additional 
control mechanisms, which standard approach leads to pa-
vement drilling, what is prohibitively expensive to the she-
er scale of a pavement management system. Instead of this, 
an original control methodology, based on the empirical 

relationship between bituminous layer thickness, pave-
ment deflection and basin deflection parameters available 
from deflection measurement data, is proposed. Consequ-
ently, the additional information was obtained, indicating 
the need to exclude from the mechanistic analysis of pa-
vement thickness identification data for the sections that 
are inconsistent with assumptions underlying the artificial 
neural network training set.
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