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1. Introduction

Efficient safety assessment of bridges requires accurate 
estimates of characteristic maximum traffic load effects. 
Simplified load models, where characteristic loading is 
represented by an idealised pattern of load, are used to cal-
culate load effects for bridge design in particular (Miao, 
Chan 2002). Weigh-in-motion (WIM) systems, which 
measure axle weights and spacings as trucks pass at nor-
mal highway speeds, provide raw data that can be used 
for more accurate load modelling. Characteristic bridge 
load effects can be estimated from WIM data in different 
ways. Statistical extrapolation of the load effects generat-
ed by the WIM data is a popular method in the literature 
(Caprani, OBrien 2010; Nowak, Szerszen 1998). A disad-
vantage of this method is that it may be overlooking cer-
tain multiple-truck loading events that are not captured in 
the WIM measuring period. To address this, Monte Carlo 
simulation methods can be used (Enright, OBrien 2013). 
‘Long-run’ simulations can generate hundreds or even 
thousands of years of traffic at a site. Over this simulated 

period, critical combinations of trucks, which may not 
have been measured, will be generated and assessed.

A Monte Carlo simulation of single-lane traffic can 
easily be extended to two-lane bidirectional traffic where 
each lane is considered independent of the other (Dissanay-
ake, Karunananda 2008). Many highway bridges however 
carry multi-lane same-direction traffic. This situation is 
more complex, with dependence between lanes produc-
ing correlations of truck location such as when one truck is 
overtaking another. There can also be correlations of truck 
weights such as when trucks from the same organisation 
travel together. These correlations are significant when cal-
culating characteristic load effects on short to medium span 
bridges where free-flow traffic conditions govern (OBrien, 
Enright 2011). Same-direction traffic can be modelled as an 
equilibrium renewal stochastic process (Croce, Salvatore 
2001), but this does not address the issue of correlation. 

Calibration studies for bridge design of load mod-
els also fail to offer a satisfactory solution to the two-lane 
same-direction problem. The US AASHTO LRFD Bridge 
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Design Specifications were calibrated using assumptions for the 
frequency of side-by-side truck occurrences and the weights 
of the trucks involved (Nowak 1999). For this, assumptions 
on weight correlation were entirely based on judgement, as 
almost no data was available (Kulicki et al. 2007). The calibra-
tion of Load Model 1 in EN 1991-1-2:2002 Eurocode 1: Actions 
on Structures – Part 2: Traffic Loads on Bridges used short traf-
fic samples (3–14 days) from a number of sites and extrapola-
ted using Rice’s Formula (O’Connor et al. 2001). However, as 
previously mentioned, only truck meeting events observed in 
the short measuring periods are considered in extrapolations 
such as this. The approach does not utilise the benefits of more 
recently developed long run simulations, which can simulate 
millions of different loading events on the bridge and generate 
many types of meeting events, which did not occur during the 
measuring period.

OBrien, Enright (2011) propose a method for mod-
elling multi-lane same-direction traffic and show that the 
significant weight and gap correlations identified in exten-
sive WIM data are modelled correctly. The method works 
by dividing the WIM record for the site into ‘scenarios’, each 
containing between 5 and 8 slow-lane trucks, together with 
any adjacent trucks in the fast lane. To simulate traffic at the 
site, scenarios are repeatedly selected at random from the 
WIM data. For each scenario, the truck weights and inter-
truck gaps are varied using Kernel Density estimators. With 
this smoothed bootstrap method (De Angelis, Young 1992) 
each parameter of the selected scenario is slightly perturbed 
to create a new scenario with similar properties to the origi-
nal, while maintaining gap and weight correlations. The 
bandwidth used in Kernel Density Estimation controls the 
amount of variation, which is applied to the original scenar-
io. The bandwidth selection used by OBrien, Enright (2011) 
is acknowledged to be somewhat arbitrary and it is not clear 
if unrealistic driver behaviour is being created. For example, 
a situation may be created where a slow-lane truck is put in 
a position behind another truck where it should have moved 
to the fast lane to overtake it, or a fast lane truck is moved to a 
position where it should have returned to the slow lane. The 
accuracy of Scenario Modelling for estimating extreme load-
ing has also not been quantified, as estimates of long term 
loading cannot be verified with short-term WIM records.

As no long-term WIM records for two-lane same-di-
rection traffic are available, microsimulation is used here to 
generate a substitute “WIM” dataset. This extended traffic 
record is then used to assess the ability of Scenario Model-
ling to accurately model driver behaviour while perform-
ing long run traffic simulations. Microsimulation is a pro-
cess whereby the behaviour of individual drivers in a traffic 
stream is modelled. It is used here to generate an extended 
record of realistic traffic to which Scenario Modelling sim-
ulations can then be compared.  The objective is to see if the 
Kernel Density Estimation process generates scenarios that 
result in significantly different characteristic load effects. 

Microsimulation models have been applied to high-
way traffic for decades, and simulate driver behaviour 
based on how a vehicle responds to the vehicle in front. 

Many different microsimulation models exist (Brockfeld 
et al. 2004; Punzo, Simonelli 2005) and can be calibrated 
using different approaches (Chen et al. 2010; Hoogen-
doorn, Hoogendoorn 2010). These models are mostly used 
to generate patterns of congestion. Here microsimulation 
is used to model free flowing traffic, as simulation of truck 
overtaking events is required. The method works by calcu-
lating the behaviour of all vehicles on the modelled road, 
at successive time steps. Due to the computationally inten-
sive nature of the microsimulation process, it is not prac-
tical to simulate traffic loading for the entire lifetime of a 
bridge. For the purposes of this study, 10 years of traffic 
is generated using microsimulation, and this is used as a 
reference dataset for comparison with traffic produced by 
Scenario Modelling. Although this period is not as long as 
the lifetime of the bridge, it is significantly longer than any 
two-lane WIM measurements, which are available. Ran-
dom samples of 100 days of traffic are drawn from the 10 
years of micro-simulated traffic. These samples aim to rep-
resent a typical WIM measuring period. Scenario Model-
ling is then performed with these samples, and a variety of 
load effects and bridge lengths are examined to find their 
10-year return period values. These 10-year values are then 
compared with the corresponding values obtained from 
microsimulation to assess the accuracy of Scenario Mod-
elling. WIM data from a site in Poland is used as input data 
for the microsimulation model. Although bridge load-
ing codes of practice such as the AASHTO LRFD Bridge 
Design Specifications and EN 1991-1-2:2002 treat permit 
trucks separately from normal truck traffic, the extrapola-
tion to 10-year values here is based on all measured trucks, 
including those extremely heavy trucks which would nor-
mally be expected to have permits. 

The steps used in the validation of Scenario Model-
ling are shown in Fig. 1. The aim is to show that Scenario 
Modelling can accurately estimate characteristic bridge 
load effects from short term WIM measurements while 
also reproducing the complex correlations in two-lane 
same-direction traffic. There is no other method in the lit-
erature, which can do this. The goal is to demonstrate the 
suitability of the method for the site-specific assessment of 
these very common bridges and also its use for generating 
more general load models for bridge design/assessment.

2. Scenario Modelling

In Scenario Modelling, the WIM data for a site is divided 
into a series of scenarios, which are then used to simulate 
new traffic at that site (OBrien, Enright 2011). Scenario 
Modelling is concerned only with the trucks in the WIM 
data; the cars are ignored as they are considered insignifi-
cant for short-span bridge loading. Some simple rules are 
used to identify scenarios for different traffic flow rates. 
The aim is to maximise the variability of the scenarios 
while preserving patterns of correlation in the measured 
traffic. In the simulation, randomly selected scenarios are 
placed in the traffic in sequence, with the last truck in one 
scenario being replaced by the first truck in the following 
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scenario. This preserves the appropriate gap distributions, 
but care needs to be taken to avoid a very light truck re-
placing a heavy truck or vice versa. This is achieved when 
extracting scenarios from the WIM data by specifying that 
the first and last slow-lane truck in the scenario must have 
a gross vehicle weight (GVW) less than 30 tonnes. These 
lighter trucks are assumed not to be significant for criti-
cal bridge loading and therefore swapping one of these 
trucks for another will not affect the characteristic load 
effects obtained from simulation. Four types of scenario 
are extracted from the WIM data, with successive scans 
based on a minimum of five, six, seven and eight slow-lane 
trucks per scenario, together with any adjacent fast-lane 
trucks (Fig. 2). In each scan, if the last truck is greater than 
30 t then more trucks are included until the scenario can 
finish on a slow-lane truck, which is less than 30 t (OBrien, 
Enright 2011). The different scans allow for more variation 
in the scenarios and capture more scenario configurations.

In the simulation, as each scenario is selected, the va-
lues of the parameters, which define it – vehicle weights 
and inter-truck gaps – are perturbed using Kernel Density 
estimators. Kernel Density Estimation is a general method 
for estimating the probability density function (PDF) of 
sample data using kernel functions. Each sample data point 
is replaced with a kernel function and these functions are 
summed to build the PDF. The kernel functions are typi-
cally unimodal, with the Normal distribution often used. 
In Monte Carlo simulation, the PDF of a random variable 
can be constructed numerically from sample data using 
Kernel Density Estimation, and this can be used to cons-
truct the cumulative distribution function (CDF) from 
which random values can be generated. A simpler alterna-
tive, which achieves the same result, is to use the smoot-
hed bootstrap approach (De Angelis, Young 1992) where 
values are taken randomly from the sample data, and these 
values are then be perturbed by adding a random value 
drawn from a kernel function. This is the technique used 
in the Scenario Modelling approach. 

For each random variable being simulated, decisi-
ons must be made on the type of kernel function to be 
used and, more importantly, the bandwidth of the chosen 
function. The bandwidth is a measure of the amount of 

perturbation being added to the selected data value. For 
example, if using Normal kernel functions the bandwidth 
is the standard deviation of the Normal distribution used. 
For a triangular kernel function, the bandwidth is equal to 
half the length of the base. The bandwidths used here for 
Kernel Density Estimation are those used by OBrien, En-
right (2011) and are listed in Table 1. 

The Scenario Modelling approach was developed to 
model multi-truck bridge loading events. For short-span 
bridges, the critical events often consist of two or more re-
latively common trucks on the bridge at the same time, such 
as that in Fig. 3a. However, not all bridge load effects are go-
verned by events of this type. Some critical load effects are 
caused by extremely rare single truck loading events where 
the Kernel Density approach does not work as well. These are 

Fig. 1. Scenario Modelling validation procedure

Fig. 2. Sample scenario showing the properties which are varied 
in Scenario Modelling (GVW = gross vehicle weight)

Table 1. Bandwidths used for kernel functions 

Variable (x) Kernel Type Bandwidth

Slow lane GVW, ta Normal

Fast lane GVW, t Normal

Slow lane gap, s Triangle min(0.2x, 0.6)

Fast lane gap, s Triangle min(0.3x, 0.6)

Inter lane gap, s Triangle min(0.08|x|, 0.16)

Slow lane speed, km/h Triangle 0.6

Fast lane speed, km/h Triangle 1.0
Note: a – max(x) is the maximum observed GVW in that lane for the 100 
day traffic sample. 
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events which are caused by low frequency extremely  heavy 
permit trucks (Fig. 3b). Over the lifetime of a bridge, it is 
expected that permit trucks which are significantly heavier 
than those recorded in the WIM measuring period will cross 
the bridge. The Kernel Density approach will not generate 
these trucks correctly as the extrapolation of weight is res-
tricted by the bandwidth used. To allow for these trucks in 
Scenario Modelling, when a scenario is selected which in-
cludes a permit truck above a certain weight, this truck is 
replaced with a new, randomly generated, one. 

A process similar to the methodology described 
in (Enright et al. 2015) is used to generate the new very         
heavy permit trucks. Permit trucks are first separated into 
the three categories (Enright et al. 2015) which have been 
found at the Poland WIM site (Fig. 4). The tail of a biva-
riate Normal distribution is then fitted for each category 
(Enright, OBrien 2013) of truck above a certain weight 
threshold, as in Fig. 5. This bivariate Normal distribution, 
along with univariate Normal distributions fitted to the  
other truck characteristics shown in Fig. 4, is then used to 
simulate new trucks. This allows permit trucks, which are 
heavier and which have more axles than those in the mea-
sured scenarios, to be generated. This approach is similar 
to that used by OBrien, Enright (2011) and is necessary for 
the accurate simulation of the different categories of per-
mit trucks, which are important for bridge loading.

3. Microsimulation

Microsimulation is used in this work to produce a stream 
of free-flowing traffic based on the measured WIM data.  
A computer program, Simba (Simulation for Bridge As-
sessment), developed by Caprani (2012) is used to per-
form the microsimulation. This program is based on the 
Intelligent Driver Model (IDM) described by Treiber and 
others (Treiber et al. 2000), and on the MOBIL lane chang-
ing model (Kesting et al. 2007).

3.1. Intelligent Driver Model 
The Intelligent Driver Model (Treiber et al. 2000) uses a 
continuous function of acceleration and deceleration terms, 

Fig. 3. Examples of the events causing maximum load effects   
for the 10 years of microsimulation

Fig. 4. Simplified vehicles used in simulation to represent the three 
permit truck types found in Poland WIM data (Enright et al. 2015)

Fig. 5. The tail of a bivariate Normal distribution fitted to gross 
vehicle weight (GVW) and numbers of axles, for low loaders 
above a certain weight threshold at the Poland WIM site
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which describes the longitudinal motion of each vehicle in 
response to its surroundings. The model is parameterized 
with some easily measured physical, mechanical, and driver 
performance parameters.  In particular, the IDM is based 
on the idea that a driver tries to minimize braking decelera-
tions. Eq (1) defines the acceleration a vehicle undergoes:

 , (1)

where v(t) – current speed, m/s; α – maximum accelera-
tion, m/s2; v0 – desired speed, m/s; s*(t) – desired mini-
mum gap, m; s(t) – current gap, m.   

Eq (2) gives the desired minimum gap:

 , (2)

where s0 – minimum jam distance, m; T – safe time head-
way, s; Δv(t) – speed difference between current vehicle and 
vehicle in front, m/s; a – maximum acceleration, m/s2; b – 
comfortable deceleration, m/s2.

3.2. MOBIL Lane Changing Model
In the microsimulation, lane-changing behaviour is de-
termined by the MOBIL model (Kesting et al. 2007).  The 
model can accommodate symmetric passing – passing on 
either side of the vehicle ahead – but here it is used for 
asymmetric passing where only the fast lane is used for 
overtaking. For a lane change to take place, there must be 
an incentive for the driver to do so as well as it being safe to 
do so. The incentive criterion for a slow to fast lane change 
is given in Eq (3) and is shown in Fig. 6:

 , (3)

where ã – acceleration after lane change, m/s; a – accelera-
tion before lane change, m/s; Δath – acceleration thresh-
old (prevents lane changes with marginal advantage), m/s;  
Δabias – bias acceleration (bias of vehicles to occupy slow 
lane), m/s;  p – politeness factor (reflects driver consider-
ation for other road users).

For a lane change to take place, the increase in ac-
celeration for the current vehicle ãc – ac must exceed the 
acceleration threshold and the bias. The disadvantage to 
the new following vehicle an – ãn, weighted by the polite-
ness factor, is also considered. A lane change for a vehicle 
returning to the slow lane from the fast lane is also influ-
enced by the disadvantage it is imposing on the following 
vehicle in the fast lane. The incentive criterion for such a 
slow-to-fast lane change is: 

 . (4)

The safety criterion ãn ≥ –bsafe is used to restrict the 
model from imposing an unsafe deceleration on the new 
following vehicle in the target lane. The maximum safe 
braking is given by bsafe.

3.3. Simulations
The microsimulation model requires an input stream of ve-
hicles of all types, both cars and trucks. Although trucks 
generate the significant load effects on bridges, cars are also 
required to space the trucks correctly. Two-lane same-di-
rection WIM data, including cars, recorded at a site on the 
A4 near Wroclaw in Poland in 2008. It is used as the input 
for microsimulation. Various input parameters, listed in 
Table 2, determine driver behaviour in the microsimula-
tion. Some of these parameters are taken from Kesting et al. 
(2007), while others are specifically calibrated to match im-
portant characteristics of multi-truck bridge loading events 
as observed in the recorded traffic at the site in Poland. 

The desired speeds for cars and trucks are adjusted so 
the model produces a distribution of speeds similar to those 
measured. Variation in desired speed is important to facili-
tate overtaking, which generates side-by-side bridge loading 
events. A Normal distribution for speed is used as it gives 
a good fit to the measured data. The politeness factor, lane-
changing threshold and slow lane bias are also adjusted to 
give the measured proportion of trucks and cars in the slow 
and fast lane. This adjustment is important as the number 
of side-by-side bridge loading events is proportional to the 
number of trucks in the fast lane. The number of lane changes 
per kilometre per hour was also checked and found to be in 
agreement with measured lane changing data at other sites 
for the same traffic flow (Sparmann 1979; Yousif, Hunt 1995). 
Previous work (Enright et al. 2012) has shown that microsi-
mulation reproduces behaviour such as platooning of trucks 
which arises from the different desired speeds applicable to 

Fig. 6. Lane changing with the MOBIL model: ac – acceleration 
before lane change; ãc  – acceleration after lane change; c – current 
vehicle being examined; o – old following vehicle; n – new 
following vehicle

Table 2. Microsimulation parameters

Parameter Cars Trucks

Kesting et al. (2007):

   Safe time headway, T 1.2 s 1.2 s
   Maximum acceleration, a 1.5 m/s2 1.5 m/s2

   Comfortable deceleration, b 2 m/s2 2 m/s2

   Minimum jam distance, s0 2 m 2 m
   Maximum safe deceleration, bsafe 4 m/s2 4 m/s2

Site-specific:
   Desired speed, v0 95.5 km/h* 88.0 km/h**

   Politeness factor, p 0.1 0.5

   Lane-changing threshold, Δath 0.1 0.5
   Bias for the slow lane, Δabias 0.1 0.8

Note: * – Normal distribution: μ = 95.5, σ = 17.5; ** – Normal distribu-
tion: μ = 88, σ = 14.5.
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trucks and cars. This gives correlations between gaps simi-
lar to those found in measured traffic. While no allowance is 
made in this work for weight-dependent variations in truck 
speeds, Scenario Modelling will reproduce any patterns of 
correlation found in the traffic generated by microsimulation.

The microsimulation is run over a 10 km road, and 
bridge load effects are calculated for a bridge at the end 
of this road. This allows the simulated traffic to reach a 
steady state before load effects are calculated. To ensure 

consistency with Scenario Modelling, the relatively small 
load effects produced by cars are ignored.  

The WIM data used contains 84 weekdays of traffic, 
with 340 650 trucks and 986 087 cars. In the microsimula-
tion of 10 years of traffic, it is necessary to allow for trucks, 
which are heavier and have more axles than those in the 
relatively short measurement period. The input stream of 
vehicles is generated by randomly selecting vehicles from 
the measured data. When a permit truck above a certain 
weight limit is selected it is replaced with a new, randomly 
generated, one. The new permit trucks are generated from 
the tail of a bivariate normal distribution using a method-
ology similar to that described in section 2. 

4. Methodology and results

The accuracy of Scenario Modelling is assessed using the 
output from 10 years of microsimulation as the reference 
data. Random samples of 100 days of traffic are selected 
from the reference data and they are used as the input for 
Scenario Modelling. The load effects with a return period of 
10 years are calculated from each run of Scenario Modelling, 
and compared with the values calculated from the micro-
simulation. The choice of the 10-year return period as the 
basis for comparison avoids the need to extrapolate beyond 
the 10-year microsimulation period, which would increase 
the uncertainty involved. In order to reduce the variability 
in the estimation of the 10-year return period values from 
Scenario Modelling, 40 years of traffic is modelled. This pro-
cess is repeated with 25 random 100-day samples. A Weibull 
extreme value distribution is fitted to the maximum daily 
load effects, from both the microsimulation and Scenario 
Modelling, to smooth the random variation in the data. As 
only the trend in the tail of the data is of interest, the distri-
bution is fitted to the top 2√n data points (Castillo 1988). 

The load effects used are calculated using simple influ-
ence lines. The relative positions of the trucks are fixed as they 
are passed across the influence line. Whilst this is unrealistic, 
if variable truck velocities are allowed for, trucks might get 
too close to each other as they move across the bridge. The 
load effects examined are mid-span bending moment on a 
simply supported bridge (LE1), shear at the exit support of 
a simply supported bridge (LE2) and hogging moment over 
the central support of a two-span continuous bridge (LE3). 
The load effects are calculated for total bridge lengths of 
20 m, 30 m, 40 m and 50 m. Lane factors (Enright, OBrien 
2013) are used to account for the transverse stiffness. Ma-
ximum bridge load effects are assumed to occur under the 
slow lane, and the contribution of trucks in the fast lane is 
calculated by applying a suitable lane factor. For the purpo-
ses of this work, the bridge is assumed to have a high trans-
verse stiffness, with both lanes contributing equally to load 
effects LE1 and LE3 (bending moment). For LE2 (shear), 
the contribution of fast-lane trucks is reduced by applying 
a factor of 0.45. High transverse stiffness is chosen because 
side-by-side loading events are more critical for this type of 
bridge, and it is these events that Scenario Modelling is in-
tended to model most accurately. 

Fig. 7 shows an example of results from the simu-
lations. The 10 year return period load effects, from the 

Fig. 7. Comparison of the microsimulation results with one 
of the Scenario Modelling runs, with a histogram showing               
the results for all 25 Scenario Modelling runs
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reference microsimulation data set, are compared with the 
10year estimates from Scenario Modelling. Scenario Model-
ling is performed using 25 random 100day samples, which 
are drawn from the 10 years of reference data. The repeated 
simulations allow the distribution of the errors to be exami-
ned and these are shown in histogram form in Fig. 7.

Table 3 shows the errors relative to the microsimu-
lation reference results, for all the load effects and spans 
examined. The mean and standard deviation is calculated 
for the errors of the 25 Scenario Modelling runs. It can be 
seen that, on average, mid-span bending moment is slight-
ly underestimated for all spans whereas the error for shear 
and hogging moment is generally close to zero. All mean 
errors are within ±5% of the reference microsimulation 
dataset and the highest standard deviation is 6.6%. 

Table 4 shows the types of event that cause the greatest 
effects for all the bridge lengths and load effects examined. 
The governing events for mid-span bending (LE1) consist 
of multiple trucks, mostly two standard trucks side-by-
side. On the other hand, the critical events for shear (LE2) 
are mainly single-truck events consisting of one extremely 
heavy truck alone on the bridge. The main reason for this 
is the relatively low contribution from fast-lane trucks for 
this load effect, and the importance of groups of closely-
spaced axles adjacent to the bridge support. The important 
events for hogging (LE3) are multi-truck events but sin-
gle-truck events also feature. The majority of multi-truck 
events in Table 4 consist of two trucks side-by-side on the 
bridge, but, for the 40 m and 50 m spans, some events are 
found that involve more than two trucks, at least partly on 
the bridge, simultaneously.

The extremely heavy trucks that tend to govern for 
shear are generated from both microsimulation and Sce-
nario Modelling by the bivariate Normal distribution des-
cribed earlier, and therefore close agreement can be expec-
ted between the two approaches. The multi-truck events 
that govern for mid-span bending and support hogging 
moments (LE1 & LE3) consist of two, or sometimes more, 
relatively common trucks on the bridge at the same time. 
In these multi-truck events the Kernel Density estimators, 

which vary the weight and relative positions of the trucks in 
the scenarios, are important. The Kernel Density approach 
in Scenario Modelling underestimates the required values 
for LE1 by an average of 3.3%, with the error reducing as 
span increases, and slightly overestimates for LE3. 

6. Conclusion

1. The accuracy of Scenario Modelling for performing two-
lane same-direction traffic simulations for bridge load-
ing purposes is assessed. As extended weigh-in-motion 
records for two-lane same-direction traffic are not avail-
able, Microsimulation is used to create a reference dataset 
of traffic, which is used to assess the accuracy of Scenario 
Modelling. Microsimulation is used as it can model realis-
tic driver behaviour in such traffic, including truck-over-
taking manoeuvres, which are important for loading on 
two-lane same-direction bridges. The overall driver behav-
iour of the reference dataset is not representative of traffic 
at any particular site, but the important truck overtaking 
events are calibrated against measured weigh-in-motion 
data from a site in Poland. 

2. The results of this study show that, when modelling 
10 years of traffic from a 100-day sample, Scenario Model-
ling does not distort driver behaviour in any way that would 
significantly change the estimates of 10-year load effects.

3. Mean errors are examined for a variety of 10-year 
load effects, and all are within ±5% of the reference value, 

Table 3. Errors for all load effects examined in 25 Scenario 
Modelling runs (LE1 = mid-span bending, LE2 = shear,                   
LE3 = hogging moment over central support) 

LE1 LE2 LE3

Mean SD Mean SD Mean SD

20 m –4.6 5.2 0.8 6.6 3.6 5.3

30 m –3.5 5.7 –0.6 6.2 0.6 5.1

40 m –2.8 5.6 –1.1 6.1 –0.6 5.4

50 m –2.2 5.4 –1.2 6.1 0.6 4.2

Mean –3.3 5.5 –0.5 6.2 1.0 5.0

Table 4. Event types for the 20 greatest load effects for the reference microsimulation and Scenario Modelling traffic, for all bridge 
lengths and load effect types (LE1 = mid-span bending, LE2 = shear, LE3 = hogging moment over central support) 

Bridge length, m Simulation
LE1 LE2 LE3

No. Single
Truck Events

No. Multi-
Truck Events

No. Single
Truck Events

No. Multi-
Truck Events

No. Single
Truck Events

No. Multi-
Truck Events

20
Reference 0 20 15 5 2 18

Scen. Mod. 0 20 20 0 3 17

30
Reference 0 20 16 4 5 15

Scen. Mod. 0 20 19 1 5 15

40
Reference 2 18 18 2 8 12

Scen. Mod. 0 20 20 0 4 16

50
Reference 2 18 18 2 6 14

Scen. Mod. 0 20 16 5 4 16
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with a maximum standard deviation of 6.6%. With any si-
mulation, some random variation in results is inevitable, 
and the differences between the results from microsimu-
lation and from Scenario Modelling are considered to be 
acceptably low.

4. It is also found that Scenario Modelling works well 
for both multi-truck loading events, for which it was origi-
nally developed, and for single-truck events. This is signifi-
cant because the relative importance of different event types 
for different load effects can be expected to vary from site to 
site, and the model must work well for all event types.

5. The results indicate that Scenario Modelling, which 
has previously been shown to be capable of modelling the 
important correlations of inter-truck weights and gaps, can 
also accurately extrapolate to characteristic load effects. As 
is shown in the literature review, there is no other appro-
ach for modelling two-lane same-direction traffic loading 
on bridges, which can do this. Therefore, the Scenario Mo-
delling approach has significant potential to be used to ob-
tain accurate estimates of characteristic load effects for the 
assessment of existing bridges or for the development of 
load models for bridge design.
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