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1. Introduction

1.1. Weigh-in-Motion
The development of technologies to weigh vehicles, and 
later individual axles, in motion started in the USA in the 
1950s. Followed by fast developments, the Weigh-in-Motion 
(WIM) technology was available at elevated vehicle speeds 
in the 1970s. The versatility of the data acquired, which en-
abled, amongst others, the use of actual loads of heavy ve-
hicles for pavement and bridge monitoring (e.g. OBrien 
et al. 2013), pavement design and especially in law enforce-
ment (excess weight control, fining), lead to a fast world-
wide spread of WIM sites and the further development of 
the measuring technologies with regard to accuracy at high 
speeds, durability, filtering and quality assurance of the data 
acquired. Guidelines and specifications of WIM sites were 
assessed in the COST 323: Weigh-in-Motion of Road Vehi-
cles action between 1992–1999, which aimed at unifying 
the technological aspects of the technology across Europe. 
The research covered requirements for WIM locations, ac-
curacy requirements and classes as well as data assessment, 
making the findings of the report practically a European 
WIM standard. A part of the further research proposed by 
COST 323 was conducted in the European research WAVE 

(Weigh-in-Motion of Axles and Vehicles for Europe), involv-
ing algorithms to increase accuracy and data filtering, and 
the development of a new, carbon fibre weighing technology. 

In 1996, with the financial support of the World Bank 
there were some 30 WIM sites installed in Hungary, which 
are still in use and data is continuously collected and sto-
red, however only used for law enforcement purposes.

1.2. Hungarian pavement design
According to the e-UT 06.03.13 [ÚT 2-1.202:2005]: Asz-
faltburkolatú útpályaszerkezetek méretezése és megerősítése 
[Design of Road Pavement Structures and Overlay Design 
with Asphalt Surfacings] the standard Hungarian design 
traffic is calculated in passes of 100 kN equivalent single 
axle loads (ESALs). Load equivalency factors (LEFs) are 
used to calculate the cumulated damaging effect of vari-
ous types of heavy vehicles compared to the standard axle 
load. The currently used factors were developed based on 
WIM data acquired during the first few years of operation 
between 1996–1997 (Csenki, Gulyás 1997), followed by mi-
nor updates. The factors were calculated based on one of the 
main findings of the AASHO road research, known as the 
Fourth Power Law, however the Hungarian standard shift-
ed the fourth power to the fifth in the early 2000s. As the 
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research showed the fifth power leads to less than 5% differ-
ence and the manual was updated (Gulyás 2002). Eventu-
ally, the calculation of the LEF for a given heavy vehicle is 
given in Eq (1):

	 ,	  (1) 

where LEF – load equivalency factor; AFj – correctional 
factor considering tyre type (1.00 for traditional twin tyre, 
1.04 for super single, 1.06 for single tyre); BNj – correction-
al factor considering tyre pressure (0.90‒1.15 according to 
pressure value in kPa); Tj – axle load, kN; Te – equivalent 
single axle load, 100 kN; h – exponent considering damage 
compared to the equivalent single axle (in Hungary h = 5). 

Analysis of the compliance of Eq  (1) is out of the 
scope of the current paper. However previous research 
has shown that such factors as tyre pressure (Sivilevičius, 
Petkevičius 2002) and tyre type (Sebaaly, Tabatabaee 1992) 
have great influence on the submitted axle load to the 
pavement, as well as axle spacing within a given axle group 
(Gillmann 1999) and those factors should be considered. 
Despite their undisputable effects, partly due tu their dif-
ficult measurability in a statistically convincing way, there 
are no relevant researches regarding proved data for such 
factors to be considered in this research, to the knowledge 
of the authors. It has also been observed that the effect of 
overloaded vehicles on the fatigue life of the pavement is 
severe due to the exponential effect (Coley et al. 2016; Pais 
et al. 2013; Zhao et al. 2012). The e-UT 06.03.13 consid-
ers the most frequently occuring heavy vehicle types and 
combinations sorted into detailed and merged vehicle 
classes as shown in Table 1. Load equivalency factors are 
given for both the detailed and merged vehicle classes. 

The pavement design manual provides methods to 
calculate the design traffic based on the detailed and the 
merged vehicle classes as well as based on known axle 
loads or known axle passes. However, as the results of the 
regular Hungarian traffic surveys, officially published each 
year, quantifies heavy vehicles sorted into the only mer-
ged vehicle classes, the calculation of design traffic is only 
possible accordingly in most cases. Thus, due to the lack of 
data, the methods based on detailed vehicle classes, known 
axle loads or known axle passes is only used in a few cases 
where the detailed data is known is easily estimated. 

Using the quantity of heavy vehicles in each mer-
ged vehicle class, considering the load equivalency factors 
ans other factors which are out of the scope of the curent 
study,the design traffic is calculated for a given design pe-
riod. As previous research has shown a slow but constant 
growth of axle loads in Hungary (Gulyás 2012), the cor-
rect determination and regular revision of the factors is 
important for the correct calculation of the design traffic, 
especially considering the synergistic effect of the simulta-
neous growth in traffic volume and axle loads.  

The use of WIM measurements for this purpose is 
obvious, as such data offers the possibility to categorise he-
avy vehicles and to describe the whole axle load spectra at 

the same time. Accordingly, WIM data was used to inspect 
the factors regularly until 2010, however the values have 
been constant since 2005. 

2. The acquired WIM data

The operation and data assessment of WIM sites in Hunga-
ry is under the authority of the Hungarian Roads Agency, 
which operates the public road network as well. The use of 
the sites is limited to law enforcement (i.e. overweight con-
trol, fining) for the past few years and as to the knowledge 
of the authors the last published statistical analysis of ve-
hicle and axle loads was conducted in 2009 (Gulyás 2009), 
leaving the factor unchanged. The vast majority of the sites 
are mainly located at border crossings (mostly on both exit 
and entry sides). After the access of Hungary to the Schen-
gen area the mandatory weighing at the Slovenian, Austri-
an and Slovakian borders was terminated. Therefore WIM 
data for the current study was only collected from sites at 
non-Schengen Hungarian borders, i.e. the Ukrainian, the 
Romanian, the Serbian and the Croatian borders. This fil-
tering of data is assumed to ensure a real axle load spectra, 
which contains data about overweight vehicles and axles, 
as compared to the Schengen border data. The WIM data 
for 2014 was collected from the database. 

2.1. Structure of WIM data 
The system provides automatic axle coding at each weigh-
ing, which distinguishes tractors, trailers and semitrailers, 
tyre type (single, dual, road-friendly suspensions), axle 
groups (single, tandem, tridem) and axle spacings. Loads 
are measured for each passing axle. In general all vehicles 
are clearly classified into the classes presented in Table 1 
and unreal axle loads, false axle codes, or other inconsist-
encies clearly identify measurement errors. 

2.2. Vehicle classification
There were approximately 2.4 million vehicles measured 
at the four borders in 2014. Based on axle codes, after fil-
tering false data, about 93% of data was classified into the 

Table 1. Merged and detailed heavy vehicle classes and the current 
load equivalency factors

Vehicle type Detailed 
vehicle class

Merged 
vehicle class

B B

C1
C

C2

D1
D

D2

E1

E
E3

E4
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detailed and merged vehicle classes presented in Table 1 
based on vehicle type. Analysis of the remaining 7% of 
the data showed there are three additional vehicle types 
unconsidered in the classification, although occuring fre-
quently.  Suggesting three new vehicle types (DX1, DX2, 
DX3) enabled the assessment of further 5%, leading to the 
overall 98.18% utilization of the data available. The dis-
tribution of measurements for vehicle types, detailed and 

merged vehicle classes, used for further analysis is shown 
in Table 2. 

Although the vast majority of the data concerns inter-
national traffic and the distribution is not entirely valid to 
describe properties of heavy vehicles in the national traffic, 
the consideration to delete vehicle classes C22, D22, E31 and 
E32 is suggested, provided that the further measurements 
on the national road network will corroborate the findings. 

Table 2. Distribution of measurements 

No. of measured 
vehicles

Occurrence Vehicle type Vehicle sign Detailed vehicle class Merged vehicle class

0 ~0.00% B B B

167 966 7.10% C1 C1

C5 788 0.24% C21
C2

28 ~0.00% C22

13 434 0.57% D11
D1

D

12 733 0.54% D12

10 933 0.46% D21
D2

489 0.02% D22

54 812 2.32% DX1

DX60 744 2.57% DX2

16 122 0.68% DX3

5 966 0.25% E11
E1

E

214 371 9.07% E12

1 797 771 76.04% E2 E2

667 0.03% E31
E3

70 ~0.00% E32

2 452 0.10% E4 E4

Fig. 1. Example of gross weight and axle load histograms for semi-trailers
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It should be noted that as the measurements were 
made at border crossings, there is no convincing data on 
buses and coaches. This is mostly because such vehicles 
are relatively rare at border crossings and toa  lesser extent 
the misqualification of bus axle codes is possible. Table 3 
shows that the axle pattern according to vehicle type C1 is 
the same as for buses (vehicle type B). 

3. Methodology

3.1. Distribution of axle loads
Figure 1 shows an example of gross weight and axle load 
spectra for the most frequently measured E2 semi-trailers. 
As seen, except for axle No. 1, load distributions have two or 
more peaks, indicating there are multiple load stages distin-
guished. As seen, the use of normal distributions, as shown in 
COST 334: Effects of Wide Single Tyres and Dual Tyres is in-
adequate to describe the load spectra. Instead, a multimodal 
distribution must be used. Experience showed that multimo-
dality is true for all axles analysed and for all vehicle types. 

The proper mathematical description using conti-
nuous functions of the axle load spectras will be essential 
for the proposed method presented in Section 3.4.

3.2. Mathematical representation of the data
Figure 1 shows that the axle load histograms have usually 
two or more peaks, therefore, specific distributions are un-
adequate to describe the spectra. The obvious solution is 

therefore to find a mixture of Gaussian distributions that 
fit the data. The probability density function of the Gauss-
ian mixture distribution is described in Eq (2).

	 ,	  (2) 

where  – a Gaussian probability density 
function with expected value of µk and variance of , 

while for weights 0 ≤ πk ≤ 1, . The best Gaussian 
mixture distribution were determined using the EM Algo-
rithm, followed by various fit tests to determine whether 
the actual data could be in fact derived from the theoretical 
estimation function. Results showed, in accordance with 
results shown in BASt 2009, Impact of Heavy Goods Traffic 
on the Bridges of Federal Highways, that the fit achieved us-
ing a mixture of three Gaussian distributions was adequate 
in all cases. Accordingly, the algorithm is presented here-
inafter for K = 3. 

The EM Algorithm is a method to iteratively cal-
culate the maximum likelihood estimation (Dempster 
et al.  1977). In the first step (“E” step, Expectation), the 
proportion pi,k of the individual samples is calculated for 
the given measured data x = (x1, x2, …, xn) and the initial 

 parameter vector 
according to Eq (3).

	  
  	

.				    (3)

Subsequently, in the second step (“M-step”, Maximi-
zation) the log-likelihood function is maximised accord-
ing to Eq (4).

	

               
.		   (4)

Thereafter, the derivation of Eq (4) by µk, and by , 
results in Eqs (5) and (6), respectively. 

	 , 	 (5)

	 .	  (6)

Using the condition that  
equals Eq (7), i.e. θ parameter vector is updated to θ(new).

	 .	  (7) 

The iteration repeatedly done several times results in 
a series of θ parameters, which will eventually converge to 
the maximum likelihood estimation, giving the best fit for 
the mixture of three Gaussian distributions (Jordan, Lei 
1996). Fig. 2 shows the fit of the distribution to the data 
after various iterations using the EM Algorithm.  

As seen in Fig. 2, the Gaussian mixture distribution 
seems to fit after about 500 iterations. To determine the 
required number of iterations the fit tests were conducted 
as presented in Section 3.3.

3.3. Fit tests and results

The EM Algorithm iterates the parameters for the best 
fitting mix of specified number of Gaussian distribu-
tions. Regardless of this information the fit of the iter-
ated (theoretical) Gaussian mixture distribution to the 
measured data is unsure. For example, Fig. 3a shows the 
best fitted mixture of two Gaussians, and Fig. 3b shows 
the best fitted mixture of three Gaussians for the same 
axle load spectra. 
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To verify whether the measured data could be in fact 
derived from the iterated theoretical distributions deter-
mined using the algorithm, two types of fit tests were con-
ducted. Both tests, the Anderson-Darling and the Cramér-
Von Mises, imply the analysis of the weighted distance 
between the empirical and theoretical distribution func-
tion according to Eq (8):

	 , 	 (8) 

where d – difference between the theoretical function 
and the measured data; Fn(x) – empirical distribution 
function; F(x) – theoretical distribution function; w(x) – 
weight function.

The difference between the two tests lies in the weight 
function. In case of the Cramér-von Mises test w(x) ≡ 1, 
while in case of the Anderson-Darling test the weight-
ing function is w(x) = F(x) [1 – F(x)]–1 (Stephens 1974). 
Provided the measured values are in ascending order 
(x1 ≤ x2 ≤ x3 ≤ … ≤ xn), test statistic SAD is calculated ac-
cording to Eq (9), and SCvM according to Eq (10) in case 
of the Anderson-Darling and the Cramér-von Mises test, 
respectively: 

  
,	  (9)

	 ,	  (10) 

where f(x) – the theoretical distribution function. FFit 
test results showed that the mixes of three Gaussian dis-
tributions provide a fit to the measured data, i.e. the data 
is considered as a mixed Gaussian distribution, with the 
parameters calculated using the EM Algorithm. As the 
monitoring of heavy vehicle traffic parameters is crucial 
for a number of engineering problems, including pave-
ment design as the aim of this paper, regular data analy-
sis is required, which implies regular calculations on large 
amount of data. The experience with only one-year data 
showed that a high level of computer capacity is required, 
especially with regard to data storage. The presented 

Fig. 2. Goodness of fit after various iterations
Fig. 3. Best fit of multiple Gaussian distribution mixtures:             
a – mixture of 2 distributions; b – mixture of 3 distributions
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method also helps achieve efficient storage and computa-
tion of detailed data.

3.4. Determination of load equivalency factors
It is common to use WIM data to determine parameters 
for pavement design (Pais et al. 2013; Rys et al. 2016; Zofka 
et al. 2014). Previous research proved techniques to assess 
axle load spectra e.g. using regression analysis (Rys et al. 
2015), nonparametric factorial analysis (Gao et al. 2005) 
or Bayesian model theory (Morales-Nápoles, Steenbergen 
2014) or a robust aproach involving simple distribution 
analysis (Savio et al. 2016). However there are difficulties 
with the use of such techniques in the everyday practice, 
and special abilities of the data analyst are requires. The 
aim of the methodology presented in this paper is to pro-
vide a simple calculation method, yet to offer acceptable 
precision. 

The LEF of a given vehicle type is calculated by the 
summation of the damaging effect compared to the stan-
dard axle for each axle. The proposed method to deter-
mine load equivalency factors, using the continuous mix 
distribution functions for each axle of each heavy vehicle 
type, based on Monte-Carlo simulation, is shown in Fig. 3. 

The main steps to calculate the LEF for a given vehicle 
type are the following: 

1) determination of the mixed Gaussian distribution 
parameters for each axle using the EM Algorithm;

2) random selection of axle loads with probability ac-
cording to the distribution function;

3) calculation of LEF based on Eq (1) for each axle, 
and summation;

4) determination of the probability of occurrence for 
LEF calculated in step (3).

Performing the calculations sufficient times the result 
is the distribution function of the LEF for the given vehicle 
type – as experience has shown – as a normal ditribution, 
which is easily managed for further calculations.Based on 
the distribution, the factors can be determined for the de-
sired, e.g. as in engineering frequently used, 95% – confi-
dence level. 

As presented in Section 1.2, according to the Hunga-
rian pavement design guide the design traffic is calculated 
based on the merged vehicle classes. To obtain the requi-
red load equivalency factors for vehicle classes, the line-
ar combination of calculated factors for individual vehicle 
types is required considering the proportion of the given 
vehicle types within a vehicle class, as shown in Fig. 4. 

First equivalency factors for all vehicle types must be 
calculated based on the axle load spectra. Thereafter, con-
sidering the quantity of individual vehicle types, equiva-
lency factors are calculated for the detailed vehicle classes. 
Using the same methodology the factors for the merged 
vehicle classes are calculated. Results, obtained using the 
proposed method, and factors according to the current 
standard are shown in Table 3. 

As seen, the calculated factors for the most often used 
merged vehicle classes significantly differ from the values 
provided by the standard. LEF of “C” vehicle class is signifi-
cantly lower than the standard value, probably because the-
se are the most generally used commercial vehicles having 
relatively low operational costs (i.e. fuel and road pricing), 

Fig. 4. Calculation of load equivalency factors for given vehicle types
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thus the implementation of high level logistics to minimise 
unloaded or partially loaded mileage in uninportant. 

In contrast, LEF calculated for heavier vehicle classes 
than “C” are higher than the previous values provided by 
the standard, which shows that the level of logistics has 
improved, as operational costs of such vehicles is conside-
rably higher (especially road pricing). In these cases it is 
often more economical to park such vehicles in wait for a 

payload than to operate idle. This fact confirms Fig. 1, sho-
wing that the gross weight of the vehicle shown is frequ-
ently close to its legal limit of 40 tonnes. 

4. Conclusions

1. The multimodal distributions of heavy vehicle axle 
loads (and gross weights) are described with a continuous 
mathematical function of adequate precision for statistical 

Fig. 5. Calculation of load equivalency factors for the detailed and merged vehicle classes

Table 3. Current and calculated load equivalency factors for each vehicle type, the detailed and merged vehicle class

Vehicle type Detailed vehicle class Merged vehicle class

Sign No. of measured 
vehicles Vehicle LEF Sign

LEF
Sign

LEF
Current Calculated Current Calculated

B 0 – B 1.3 – B 1.30 –

C1 167 966 0.30 C1 0.5 0.30

C 0.60 0.34C21 5788 1.51
C2 1.0 1.51

C22 28 2.03

D11 13 434 1.31
D1 1.3 1.70

D 1.60 2.07

D12 12 733 2.11

D21 10 933 2.23
D2 2.5 2.20

D22 489 1.44

DX1 54 812 1.56

DX – 2.14DX2 60 744 3.13

DX3 16 122 0.35

E11 5 966 0.59
E1 0.8 0.79

E 1.70 1.81

E12 214 371 0.8

E2 1 797 771 1.94 E2 1.8 1.94

E31 667 2.09
E3 2.6 1.92

E32 70 0.27

E4 2452 1.49 E4 1.4 1.49
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analysis, using a mix of three Gaussian distributions. With 
regard to calculational and storage capacity needs of 
Weigh-in-Motion data this method is an efficient way to 
store and analyse several years of data as well. 

2. The analysis of Weigh-in-Motion data shows that 
about 5–7% of heavy vehicles consist of single and biaxial 
trailers that are only indirectly considered in the current 
Hungarian standard. Incorporation of these vehicles and 
load equivalency factors is recommended during the pa-
vement design.

3. Load equivalency factors for the detailed and mer-
ged vehicle classes, based on each vehicle type using the 
method presented have been calculated. As seen, the factors 
calculated from the recent data significantly differ from tho-
se provided in the current standard, therefore the update of 
the factors is recommended to refine the data used for pave-
ment design, as well as regular inspection of data.
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