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1. Introduction

Due to large span ability and wind resistance stability, ca-
ble-stayed bridges have become popular in recent years, 
consisting of the tower, girder, cable and other compo-
nents. Besides the dead load, wind load, seismic load, and 
temperature load, the vehicle load is a critical load that is 
taken into account in the design of cable-stayed bridges. The 
vehicle load resulting from the traffic flow on the bridge is a 
stochastic process, varying with time and location. In cur-
rent main design codes, for instance, Load and Resistance 
Factor Design (LRFD) Bridge Design Specifications, Ameri-
can Association of State Highway and Transportation Of-
ficials (AASHTO:2014); JTG D60-2015 General Code for 
Design of Highway Bridges and Culverts, Ministry of Com-
munications, Beijing, China; CEN 2003. Eurocode 1: Actions 
on Structures − Part 2: Traffic Loads on Bridges, Brussels, the 
vehicle load is treated as a notional static load that is inca-
pable of accurate representation of actual vehicle weights. 
For short and medium span bridges, the load effects (i.e., 
the moment and shear) using the superposition of vehicle 
and lane load within a single design lane that represent the 
actual load effects accurately. However, this method has 

limitations for long-span bridges, on which there is simul-
taneous presence of multiple vehicles. Some recent studies 
adopted an assumed (usually uniform) pattern of several ve-
hicles distributed on a long-span bridge in considering the 
vehicle load (Calcada et al. 2005; Chen et al. 2006; Zhou, 
Chen 2015). In fact, this assumption obviously differs from 
reality, in which vehicles move randomly through a bridge 
following traffic rules. It is essential to take into account the 
random vehicle load when analysing the load effects of long-
span bridges. Moreover, Articles 44 and 78 of the Regulation 
on the Implementation of the Road Traffic Safety Law of the 
People’s Republic of China by State Council, Beijing, China 
of 2003 stipulate that the expressway has two or more traf-
fic lanes in the same direction. The left side lane is the fast 
lane, the right side lane is the slow lane. Thus, the probability 
model of vehicle load in the fast lane (left lane), middle lane 
and slow lane (right lane) are respectively established based 
on actual traffic flow.

Nowadays, vehicle load data are usually collected 
through Weight-in-Motion (WIM) or traffic spectrum from 
the site (Mullard, Stewart 2009; Oh et al. 2007). However, 
neither of these methods provides instantaneous velocity 
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and position information of the individual vehicle, it is es-
sential to the assessment of time-varying loads for long-
span bridges. There are also several simple random pro-
cesses for the traffic flow simulation such as white noise 
fields (Ditlevsen 1994; OBrien et al. 2015) and Poisson dis-
tribution (Sun 2015). Nevertheless, they are challenging to 
address relatively complicated vehicle load in long-span 
bridges. Monte-Carlo approach is a practical and straight-
forward method, which is used to generate traffic data fol-
lowing the existing or assumed statistical distribution of 
the traffic flow (Moses 2001; O’Connor, O’Brien 2005).

This study used statistical analysis of cable stress of Su-
Tong cable-stayed bridge based on the vehicle load from la-
test survey traffic flow data, and developed the probability 
models of random vehicle load and maximum cable stress in 
design reference period. Also, reliability analysis of the stay 
cable under random vehicle load was also accomplished.

2. Cable stress calculation

The cable stress of Sutong Yangtze River Bridge was cal-
culated by the vehicles moving and time-varying status. 
Su-Tong cable-stayed bridge (Fig. 1) connects Suzhou and 
Nantong of Jiangsu province and is the second-longest ca-
ble-stayed bridge in the world with a main span of 1088 m 
(Xi et al. 2014). This sea-crossing bridge is a double-tow-
er and double-cable-plane steel-box girder cable-stayed 
bridge that was opened to traffic on 25th May 2008. Its 
design reference period is 100 years. The streamlined flat 
steel-box girder is employed in the bridge. The overall width 
of the girder is 34.0 m consisting of two-way six 3.75 m 
lanes, two 3.50 m emergency lanes, and two 2.25 m shoul-
ders. Parallel wire cables are adopted with intervals being 
16 m on the deck and 2 m on the towers. The total number 
of cables is 272 (4×34×2). Design working life of the stay 
cable is 50 years. Among them, the longest cable is 577 m 
that is record-breaking. The two main towers are inverted 
Y-shaped. The overall height of the towers is 300.40 m, mak-
ing them the tallest bridge towers in the world.

The three-dimensional finite element analysis (FEA) 
model developed in this study is shown in Fig. 1. Both 
girder and tower are modelled using beam elements 
(BEAM44) with six degrees of freedom at each node. The 
cables are modeled as link elements (LINK10) with initial 
tension stress. The non-linear behaviour of cables due to 
their sags is taken into account by using an equivalent mo-
dulus of elasticity (Wang et al. 2013). Regarding the boun-
dary conditions, the girder is free to move in the longitudi-
nal direction and restrained at the supports in the vertical 
and transverse directions. Only the rotational component 
around the longitudinal axis is restrained. The tower bases 
are fixed in all degrees of freedom. In this model, auxiliary 
girder is adopted to resist the horizontal load action, and 
the larger elastic modulus is adopted to improve the lateral 
stiffness of main girder (Zhang et al. 2001). The material 
properties of the bridge are shown in Table 1.

2.2. Cable stress of dead load
Dead load of cable-stayed bridge G consists of the first dead 
load and second dead load. The first dead load includes the 

weights of girder, tower, and cable. The weights of girder and 
tower are based on the actual cross-section properties. The 
weight of cable is obtained according to the required weight 
of steel. The second dead load is calculated according to 
the uniformly distributed load of 62.5 kN/m (Zhang, Chen 
2010). The dead load of the cable-stayed bridge is calculat-
ed by ANSYS program. Because of the small variability, the 
dead load of long-span cable-stayed bridges slightly fluctu-
ates around its average value. In the meantime, cable stress is 
considered as linearly proportional to load. Thus, the mean 
value of cable stress is obtained by the mean value of the 
dead load, and the coefficient of variation remains constant. 
GB/T 50283–1999 Unified Standard for Reliability Design of 
Highway Engineering Structures, Highway Planning and De-
sign Institute of the Ministry of Transport, Beijing, China 
specified that the bias coefficient (the ratio of mean value to 
nominal value) of dead load is 1.0148, the coefficient of vari-
ation is 0.0431, and the probability distribution of dead load 
follows normal distribution JTG D60-2004. The mean stress 
values of cable No. A13–A18 produced by a dead load of the 
bridge (µG) are shown in Table 2. 

Fig. 1. Finite element analysis model of Sutong highway bridge

Table 1. Material mechanical properties

Material 
property

Main 
girder

Auxiliary 
girder

Main 
tower

Stay     
cable

Steel Steel Concrete Parallel 
steel wire

Elasticity 
modulus, 
N/m2

2.10·1011 3.50·1013 3.25·1010 1.95·1011

Shear 
modulus, 
N/m2

8.10·1010 8.10·1012 1.42·1010 –

Density, 
kg/m3 7 900 7 900 2 600 7 900

Poisson 
ratio 0.30 0.30 0.20 0.25

Table 2. Statistical parameters of cable stress under dead load    
of bridge and random vehicle load

Cable No. µG, MPa µX, MPa σX, MPa
A13 126.19 15.68 3.47
A14 128.55 16.19 3.72
A15 129.46 18.69 4.07
A16 129.35 20.69 4.29
A17 128.78 23.75 4.63
A18 128.99 27.09 5.01
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2.3. Cable stress of random vehicle load
The bridge load model is very closely related to gross ve-
hicle weight, axle load, and inter-vehicle spacing. Also, 
the number and position of wheels change with time as 
the vehicle moves on a bridge (Helmi et al. 2014, Xu et al. 
2015). In other words, the gross vehicle weight, axle load, 
and inter-vehicle spacing are all the random variables. 
Thus, the cable stress under vehicle load is a stochastic 
process. Weighing vehicles, which travel on highways, are 
known as WIM technology. By using a WIM system, vir-
tually a 100% sample of traffic data for statistical purposes 
is obtained. The information is transmitted immediately 
in real time, or at a future time, to locations remote from 
the WIM site via conventional communications networks 
(Miao, Chan 2002). Thus, WIM systems were used to pro-
vide a significant amount of traffic flow data. These data 
were then used to determine the mathematical distribu-
tions and statistical parameters of the bridge random ve-
hicle load.

For long-span cable-stayed bridges, vehicle load occu-
pies a small proportion of vertical load (10–20%). Thus, the 
total cable stress is obtained by superposition of cable stress 
induced by vehicle load and produced by a dead load of the 
bridge. Through the supposition of cable stress obtained 

from influence surface for various vehicle positions, the ca-
ble stress under vehicle load in multi-lanes is obtained.

2.3.1. Influence surface of cable stress
Besides dead load of bridge (mean value was adopted), the 
standard axle load of 100 kN (CJJ 37-2012 Code for De-
sign of Urban Road Engineering, Ministry of Housing and 
Urban-Rural Development, Beijing, China) as the unit 
force was successively applied on node of deck element, 
in which the wheel arrives. According to the principle of 
superposition, cable stress of vehicle load is obtained by 
subtracting the cable stress produced by the dead load of 
the total cable stress. Thus, the influence surface of each 
cable stress as vehicle moves on the deck of the bridge is es-
tablished. Figure 2 shows the influence surface of No. A17 
and No. A34 cable stress with unit force.

2.3.2. Random vehicle load from Weight-in-Motion data
The maximum likelihood estimation approach is adopted 
to fit traffic flow data recorded by WIM systems. Then, the 
obtained statistical parameters such as mean value and 
standard deviation are verified by Kolmogorov-Smirnov 
(K-S) test method (Miao, Chan 2002). WIM system was 
used to record actual traffic situations having some limita-
tions, while Monte-Carlo simulation was used to regener-
ate traffic records for any chosen scenario.

1. Proportions of different types of vehicles
The proportions of different types of vehicles in the 

fast lane (left lane), middle lane and slow lane (right lane) 
are obtained by statistical analysis of the actual traffic flow, 
as shown in Table 3.

2. Gross vehicle weights
When statistical analysis is conducted for the proba-

bility distribution of gross vehicle weight, the following 
underlying assumptions shall be made:

1) live load on the bridge only considers the action 
of the vehicle load, regardless of the influence of 
other factors;

2) the operating status of vehicle load in the fast lane, 
middle lane, and slow lane is considered, respec-
tively. The stochastic process of vehicle load and a 
number of the vehicle are independent in each lane.

The gross vehicle weights of two-axle cars obey the 
lognormal distribution, and Eq (1) gives the probability 
density function:
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where µlnG1, σlnG1 − the mean and standard deviation of 
the logarithm of the ith two-axle car, respectively.

A multi-peak distribution with two or three peaks 
consists of a weighted sum of lognormal distribution and 
normal distributions, appropriately describing the gross 
vehicle weight of two-axle buses, two-, three-, four-, 
and five-axle trucks. The multi-peak probability density 
function is given by Eq (2):

Fig. 2. Influence surface of cable stress under unit load

Table 3. Proportions of different types of vehicles

Lane division

Percentage of vehicle types, %
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Fast lane 74.47 6.32 9.90 2.39 2.68 4.24
Middle lane 57.41 10.79 12.98 7.38 6.47 4.97
Slow lane 52.32 6.42 15.97 9.58 8.33 7.38
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where µlnG1, σlnG1 – the mean and standard deviation of 
the lonarithm of the 1th overall vehicle load, respectively; 
µGi, σGi – the mean and standard deviation of the ith over-
all vehicle load, respectively; p1 – the proportion of the 1st 
overall vehicle load; pi – the proportion of the ith overall 
vehicle load; ϕ(⋅) – the probability density function of the 
standard normal random variable.

These statistical parameters are summarized in Ta-
ble 4. Figures 3–5 illustrate the statistical histograms of 
the gross vehicle weights of different types of vehicles and 
their fitted theoretical distributions.

3. Time-interval of vehicle
The statistical analysis is also carried out to determine 

time-interval in vehicle load model. According to measured 
data of traffic flow, the histograms of the acquired data are 
shown in Fig. 6. Gamma distribution and exponential dis-
tribution are to be merged for K-S test and confidence level 
α  =  0.05 is adopted. The result shows that time-interval 
of the vehicle obeys gamma distribution and exponential 
distribution.

Table 4. Statistical parameters of gross vehicle weight

Lane division Vehicle types p1 µlnG1 σlnG1 p2 µG2, t σG2, t p3 µG3,t σG3, t

Fast lane

Two-Axle car 1.000 0.538 0.410 − − − − − −
Two-Axle bus 0.822 0.793 0.350 0.178 18.535 5.183 − − −
Two-Axle truck 0.744 1.425 0.543 0.164 11.992 1.999 0.091 19.918 5.037
Three-Axle truck 0.111 3.624 0.259 0.611 14.041 5.327 0.279 26.561 2.539
Four-Axle truck 0.634 3.003 0.124 0.213 40.342 15.572 0.153 10.630 4.329
Five-Axle truck 0.722 3.007 0.359 0.278 52.126 18.636 − − −

Middle lane

Two-Axle car 1.000 0.772 0.442 − − − − − −
Two-Axle bus 0.672 0.174 0.434 0.328 16.427 7.261 − − −
Two-Axle truck 0.836 1.994 0.567 0.164 20.753 7.689 − − −
Three-Axle truck 0.337 3.616 0.295 0.196 8.567 3.027 0.467 18.788 3.577
Four-Axle truck 0.542 3.206 0.159 0.309 47.974 14.375 0.150 10.164 3.651
Five-Axle truck 0.450 2.332 0.088 0.550 47.086 25.922 − − −

Slow lane

Two-Axle car 1.000 0.627 0.419 − − − − − −
Two-Axle bus 0.240 1.485 0.930 0.760 14.057 5.435 − − −
Two-Axle truck 0.562 1.856 0.589 0.194 14.775 1.284 0.243 17.205 6.208
Three-Axle truck 0.192 3.467 0.340 0.421 13.519 6.280 0.387 20.485 1.829
Four-Axle truck 0.106 3.898 0.230 0.182 20.978 8.233 0.712 23.908 3.016
Five-Axle truck 0.886 3.248 0.105 0.114 45.249 23.953 − − −

Fig. 3. Fitted probability density curve of different types of vehicle loads in fast lane
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Probability density function of the gamma distribu-
tion is as follows in Eq (3):
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where t – the random variable of time-interval of the ve-
hicle, s; Γ(⋅) – gamma function; a and b – parameters.

Probability density function of exponential distribu-
tion is as follows in Eq (4):

 ( ) t
Tf t e−λ= λ ,  (4) 

where λ − parameter.

For the statistical parameter of time-interval of the 
vehicle in Fig. 6a – a = 0.9670, b = 0.0449, λ = 0.0464; for 
data in Fig. 6b – a = 1.1231, b = 0.0603, λ = 0.0537; for 
data in Fig. 6c – a = 1.2402, b = 0.0604, λ = 0.0481. Fit-
ted parameter a of time-interval of the vehicle with gam-
ma distribution is close to 1. Time-interval of the vehicle 
approximately obeys exponential distribution to simplify 
the calculation.

4. Axle-weight proportion and axle spacing of different 
types of vehicle

The typical axle spacing of the different types vehicle 
were determined from 79 types of buses and 541 types of 
trucks presently available in China, as well as more than 
200 thousand vehicles from traffic flow data. By regression 

Fig. 4. Fitted probability density curve of different types of vehicle loads in middle lane

Fig. 5. Fitted probability density curve of different types of vehicle loads in slow lane

Fig. 6. Statistical analysis of vehicle time-interval
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analysis, the axle weight proportion and axle spacing of six 
types of representative vehicles mentioned above are sum-
marized in Table 5.

2.3.3. Bridge loading

According to random vehicle load model in Section 2.3.2, 
six groups of random vehicle loads are generated through 
Monte-Carlo method, and the vehicle loads traveling in 
the two-way six lanes and then are placed in each lane. The 
traffic flow of random vehicle is generated through Monte-
Carlo simulation as the flow chart shown in Fig. 7. The 
procedure used the site-specific vehicle characteristics of 
vehicle and axle weights. Only the cable stress of No. A1–
A34 and No. J1–J34 were analysed considering geometri-
cal symmetry.

3. Probability model of cable stress under vehicle load

3.1. Characteristics of cable stress
Stay cables are subject to loads varying with both time 
and space. For long-span cable-stayed bridges, the 

Table 5. Axle weight proportion and axle spacing of different kinds of vehicles 

Vehicle types

Proportion of axle weight Inter-axles distances, m
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Two-Axle bus 0.26 0.74 − − − − 5.00 − − − −
Two-Axle truck 0.39 0.61 − − − − 3.00 − − − −
Three-Axle truck 0.15 0.44 0.41 − − − 5.00 1.30 − − −
Four-Axle truck 0.10 0.19 0.36 0.35 − − 2.50 6.00 1.30 − −
Five-Axle truck 0.06 0.27 0.24 0.22 0.22 − 3.40 7.40 1.30 1.30 −
Six-Axle truck 0.04 0.19 0.17 0.21 0.19 0.21 3.20 1.50 7.00 1.30 1.30

Fig. 7. Flow chart of cable stress under random vehicle load

cable stress on different arbitrary-time point caused by 
the same vehicle is related. The stochastic process meth-
od is adopted for each point. As the average speed of ve-
hicle v was roughly 70 km/h (19.44 m/s), the duration of 
a continuous load applied to the structure is defined as 

0.5 0.03
19.44

st
v
∆

τ = ∆ = = = s, where Δs is distance-interval 

of 0.5 m, τ is a time interval. Hence, the cable stress caused 
by random vehicle load at the different arbitrary-time 
point is regarded as a sample function X(t) of a stochastic 
process. The mean value (µX) and standard deviation (σX) 
of sample function are given in Table 2.

The mean function and auto-correlation function 
of a stochastic process are used to describe the stochastic 
process. The auto-correlation function presents the corre-
lation among any two adjacent times t1, t2 in a stochastic 
process, which are defined as (Eq (5)):
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where ρX(t1, t2) – auto-correlation function; CovX(t1, t2) – 
covariance function; µX(t) – mean value of stochastic process 
X(t); σX(t) – standard deviation of a stochastic process X(t).

The white noise process is a sequence of independent, 
identically distributed random variables. If the influence sur-
face was different from zero over a length, and it was longer 
compared to the length occupied by single vehicle, the white 
noise would be sufficient to model the load effects (stress, 
strain, bending) (Madsen 2007). However, as the influence 
surface was sufficiently slowly varying over steps continuity, 
and the ratio between the bridge length and the mean dis-
tance among following vehicles was large enough, stationa-
ry and Gaussian were more appropriate to describe the time 
variations of load effects (Ditlevsen 1994; Jacob 1991). This 
study adopted the Gaussianity hypothesis (Jacob 1991). For 
the random sample of time-interval τ, Eq (6) gives the cova-
riance function and standard deviation function in Eq (5):
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Figure 8 shows the auto-correlation index curve at 
different time-interval τ derived from Eqs (5)–(7) express 
the auto-correlation index:

 
( )2( ) exp Aρ τ = − ⋅ τ ,  (7) 

where A – the coefficient.

Figure 8 shows that the auto-correlation curve of ca-
ble stress after 8 seconds is steady, and implies that the cor-
relation with the cable stress earlier than before 8 seconds 
is no longer apparent.

By combining WIM records and influence surfaces of 
cable stress for long-span bridges, it is possible to obtain 
different types of histograms such as histograms of the le-
vel crossing, of maxima or minima, of rain flow over the 
record period T (O’Connor et al. 1998). In particular, the 
histogram of level crossing represents the number of ti-
mes, at which positive or negative values are increasingly 
or decreasingly crossed (Fig. 9).

For cable-stayed bridge structures, the safety perfor-
mance of bridge structure is often controlled by the maxi-
mum value of cable stress in design reference period. There-
fore, only the up-crossing times of cable stress on different 
levels were calculated. If the cable stress satisfy X(t) ≤ x1 and 
X (t + τ) > x1 at two adjacent times t and t+τ, only one up-
crossing on level x1 would occur during τ, and then each 
item, that satisfies the conditions of up-crossing, was super-
posed to obtain the total times of up-crossing on this level. 
The average times of up-crossing different levels of No. A17 
and No. A34 cable stresses in 1 d (t = 24 h) are obtained as 
shown in Fig. 10, where abscissa x represents random va-
riable of cable stress, ordinate ν(x) represents the times of 
up-crossing on level x.

Due to sparse traffic flow in most cases, the number 
of crossing times around mean value relatively increases in 
the up-crossing histograms of cable stress and decreases 
progressively towards two sides. In the actual operation, 
the histogram was mainly concerned with extrapolating 
minimal or maximal cable stress for any return period. 
Hence, it was only intended to fit the Rice function on the 
tail of histogram. Rice formula is expressed as follows (Ja-
cob 1991), Eq (8):

 

( )2
0 2

( ) exp
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 −µ
 = −
 σ 

,  (8) 

where v(x) – mean rate of up crossing for a level x > 0; µ 
and σ – the mean and standard deviations of the stochas-
tic process of cable stress, respectively; v0 – the number of 
times of up crossing on the level µ.

Therefore, the Eq (8) has been used to fit the ma-
ximum cable stress in design reference period, and the 
fitting curve is referred as the smooth curve from the 
end of the tail in Fig. 10. Consequently, leads to the 

Fig. 8. Curves fitting of auto-correlation for cable stress under random vehicle load

Fig. 9. Sample function of continuous stochastic process
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identification of three parameters ν0, μ and σ for each 
tail. The fitting results of cable stress with least squares 
method are shown in Table 6, and were used in the follo-
wing reliability calculations.

3.2. Cable stress extrapolation
When the optimal fittings are obtained from each tail, the 
extrapolation of maximal effects for any return period is 
assessed. Thus, the section distribution of cable stress is 
converted to the probability distribution of the maximum 
value in design reference period.

The up-crossings rate ν(x) expresses the mean num-
ber of times of up-crossings for a level x > 0 over a unit 
time (one day in this study). Considering the bridge safety 
design, the tensile failure of stay cable is a small probability 
event. Hence, the asymptotic distribution function of the 
maximal load effects is assessed in Eq (9):
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As seen from Eq (9), the probability densi-
ty function of cable stress in design working life T is 
expressed as follows:
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In Eq (10), design working life T of stay cable are res-
pectively taken as 365·20 years = 7300 days, 365·50 years = 
18250 days and 365·100 years = 36500 days. Thereupon, the 
probability density curve of cable stress in design working 
life of 20 years, 50 years and 100 years are obtained (Fig. 11).

With the design working life T increasing, the probabi-
lity density curve of cable stress tends to move right, means 
the maximum value of cable stress under the action of ve-
hicle load in different design period increase with T.

4. Reliability analysis of stay cable

Reliability analysis of stay cable is traditionally based on a 
parametric statistical model for the strength characteristics 

Fig. 10. Up-crossing rates and fitting curves for A17 and A34 
cable stress under random vehicle loads

Table 6. Fitting parameters of up-crossing rates for cable stress

Cable No. ν0 µ, MPa σ, MPa
A13 1 749.82 16.36 5.27
A14 1 572.98 18.05 5.95
A15 1 390.58 20.15 6.71
A16 1 248.93 22.33 7.64
A17 1 107.68 24.98 8.60
A18 964.49 28.30 9.54

Fig. 11. The curves of probability density of maximum cable stress for different service life under vehicle load

of stay cable. It has been widely accepted that the static 
stay cable strength must be modelled by a random variable 
(Faber et al. 2003). Because the failure mode of stay cable 
is a tensile failure, the resistance of stay cable corresponds 
to the ultimate tensile strength.

The calculation mentioned above was the cable stress 
under the dead load of the bridge structure and random 
vehicle load. The performance function Zj for the jth stay 
cable under the random vehicle load approximately is 
expressed regarding linear function as follows in Eq (11):

 
( ) ( )j G QTj j

Z R S S= − − ,  (11) 

where (SG)j − the cable stress of jth due to dead load, fol-
lows normal distribution, and the statistical parameters are 
shown in Table 2, MPa; (SQT)j − the cable stress of jth un-
der random vehicle load, and the statistical parameters are 
taken from Table 7 and Eq (10), MPa; R − the resistance to 
stay cable, MPa.
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The resulting variation of resistance has been mo-
delled by tests and observations of existing structures (Li 
et al. 2008). The resistance of stay cable approximate obeys 
lognormal distribution, and the statistical parameters are 
in Table 7.

In this study, the cable-stayed bridge is using parallel 
wire cables. Thus, the statistical parameters of resistance of 
stay cable are respectively kR = 1.134 and δR = 0.108.

In conclusion, the statistical parameters of load and 
resistance are determined by the available data in Table 
8. Because the resistance and vehicle load effects of stay 
cable are non-normal random variable in the limit state 
function, therefore, this study adopted an iterative proce-
dure based on normal approximations to non-normal dis-
tributions at the design point.

The reliability index β of stay cable is calculated through 
the First-Order Second-Moment Method (FOSM). The re-
liability index of stay cable in design reference period of 50 
years is illustrated in Fig. 12. The reliability index of stay 
cable of Su-Tong Bridge is 9.59–10.82, that is higher than 
the target reliability index 4.2 of highway bridge structure 
of finished dead state (Li, Bao 1997).

5. Conclusions

1. The probability model of random vehicle load was devel-
oped using statistical parameters derived from the actual 
traffic flow data. It is found that the bimodal distribution 
well fits the gross vehicle weight, and the inter-vehicle spac-
ing stochastic process follows the lognormal distribution.

Table 7. Resistance statistical parameters of stay cable

Cable types kR δR
Wire tendon 1.134 0.108
Steel wire 1.202 0.149
Steel strand 1.147 0.103

Table 8. Statistical parameters of random variables

Variable Distribution pattern Mean value, 
MPa 

Coefficient 
of variation

R lognormal distribution 2 007.18 0.1580

SG normal distribution Table 2 0.0431
SQT Eqs (8)–(9) Table 7

2.  In addition, the cable stress is derived from the 
combination of Weight-in-Motion records and influen-
ce surfaces, and is described by Gauss stochastic process. 
The probability model of cable stress was determined 
through fitting the Rice formula into the tail of the level 
up-crossing histograms, and the cumulative distribution 
function of maximum cable stress in design service life 
follows a single peak distribution.

3. Based on the presented probability model of ran-
dom vehicle load, the reliability index of stay cable for Su-
Tong Bridge was calculated, ranging from 9.59 to 10.82, 
and closer to the cable tower would be more significant 
and vice versa.
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