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Abstract. In the current utilization of Performance Indicators for bridge 
Quality Control, there is no correlation between observed and benchmarked 
Performance Indicator values, and an ambiguity of deliverables due to the 
diverse nature of Performance Indicators. For the alleviation of those above, 
this paper presents a methodology that appraises the quality of bridges. This 
methodology builds on the adaptation of the Sustainable Building Method and 
its combination with expert input solicitation methods and the research findings 
of COST Action TU1406. In addition, it features an adaptation of the Analytical 
Hierarchy Process. The methodology is presented regarding its general 
procedural steps and calculating requirements, and then it is tailored to the case 
study of Strimonas Bridge in Greece.

Keywords: analytical hierarchy process, bridges, performance, project manage-
ment, quality control.
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Introduction

The use of Performance Indicators (PIs) for bridge Quality Control 
(QC) offers the following advantages:

•• the to-the-point expression and measurement of crucial bridge 
quality aspects, such as sustainability (Padgett & Tapia, 2013), 
serviceability (Liang, Wu, Huston, Liu, Li, Gao, & Ma, 2018), and 
safety (Zhang & Wang, 2017);

•• their measurement diversity, since it is possible to obtain the 
application data in various ways (e.g., field measurements, 
laboratory experiments, or expert input) (Ghosn, Dueñas-Osorio, 
Frangopol, McAllister, Bocchini, Manuel, ... & Akiyama, 2016);

•• aiding in decision-making for lifecycle provision, along with the 
current quality assessment (Frangopol, Dong, & Sabatino, 2017) 
and

•• the existence of lessons-learned from the implementation of PIs in 
project management (Barone & Frangopol, 2014).

Each framework of analysis utilizes distinct procedures to extract 
and process PIs (Frangopol, Strauss, & Kim, 2008). However, in bridge 
QC, frameworks where measured PI values are correlated with their 
benchmark values of expected and best achievable performance, are so 
far missing from the current relative implementation. It is possible for 
such a correlation to allow for a deeper understanding of the nature of 
the PIs, their context within certain quality performance aspects (Key 
Performance Indicators (KPIs), as defined by TU1406), and the way to 
improve such aspects. In addition, due to the diversity of the PIs, the 
deliverables of existing frameworks are often ambiguous.

In this paper, a general methodology to appraise the quality of 
bridges is presented, and then it is tailored for the case study of the 
Strimonas Bridge in Greece. The presented methodology aims to 
alleviate the drawbacks above in PI-oriented bridge QC, by:

•• incorporating benchmark PI values,
•• producing concise quality performance values for the components 

and the whole bridge, and
•• monitoring the intermediate procedural levels through a clear and 

systematic structure of the methodology.

1.	 Methodology

Strauss, Ivankovic, Matos, & Casas (2016) have so far identified 
55 PIs, clustered under the following broader categories:

•• general defects,
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•• material properties,
•• the condition of auxiliary and protective equipment,
•• structural geometry changes,
•• bearing capacity,
•• structural integrity and joints defects,
•• attributes of the original design and construction sequence,
•• dynamic behavior,
•• auxiliary characteristics, and
•• component cost and importance.

The PI values are obtained, depending on the case, during the 
inspection, monitoring, and maintenance processes, through common 
ways such as measurements and observations using the particular 
equipment.

The PIs are discretized between the following eleven identified KPIs, 
thus providing the respective quality: availability, costs, durability, 
environment, health, maintainability, politics, rating/inspection, 
reliability, safety, and security. It is possible to assign specific PIs to 
multiple KPIs (Strauss, Ivankovic, Matos, & Casas, 2016). In addition, 
depending on the case study, some PIs are potentially omitted or 
restated (Strauss, Ivankovic, Matos, & Casas, 2016). However, all eleven 
KPIs are present in all cases (Strauss, Ivankovic, Matos, & Casas, 2016).

These PIs and KPIs are presently used as input for the adaptation of 
the Sustainable Building (SB) Method – a generic framework for building 
sustainability performance assessment (Mateus & Bragança, 2011) – 
into a methodological framework for bridge QC. Mainly, the SB method 
initially features the following steps (Mateus & Bragança, 2011):

•• identification of the dimensions of the sustainability performance 
observed in a building;

•• discretization of these dimensions into specified subdimensions 
called Indicator Group Categories (IGCs);

•• discretization of IGCs into PI notations, namely the various basic 
elements constituting the IGCs;

•• discretization of the PI notations into Indicator Parameters (IPA). 
The IPAs are quantified and benchmarked through:
•• the actual (real practice) values obtained during the 

inspection, monitoring, and maintenance processes,
•• the conventional (standard practice) values, namely the base 

thresholds derived from regulatory frameworks and practical 
experience, and

•• the best practice values, namely the optimal thresholds, 
derived from regulatory frameworks and state-of-the-art.

•• mathematical processing of these value triplets to produce the 
normalized (in the interval [0,1]) IPA values;



334

THE BALTIC JOURNAL 
OF ROAD 

AND BRIDGE 
ENGINEERING

2 0 1 8/1 3 (3)

•• relative weights assignment for:
•• the IPAs related to the respective PI notation,
•• the PI notations related to the respective IGC,
•• the IGCs related to the respective sustainability dimension, and
•• the sustainability dimensions related to the overall sustainability 

performance of the building; this is required, since the 
importance of the respective elements is potentially unequal to 
the group in which they belong.

•• calculation of the sustainability score of the building, by 
systematically using weighted sum utility functions: from the IPAs 
to the PI notations, from the PI notations to the IGCs, from the IGCs 
to the sustainability dimensions, and from the latter to the overall 
building sustainability score. The final score is within the interval 
[0, 1].

While adapting the SB Method for bridge QC several adjustments 
utilizing the PIs and KPIs of TU1406 are made, such as the replacements: 

•• of the IPAs with the TU1406 PIs, 
•• of the IGCs with the TU1406 KPIs, 
•• of the sustainability dimensions with the bridge components.

The method applied to compute the relative weights of the PIs, KPIs 
and bridge components is the same for all three cases, so it is at this 
moment presented only for the PIs. The implemented methodological 
steps are the following:

1.	 importance rating of the g PIs (g = {1, 2, …, l}) connected to each 
of the h KPIs (h = {1, 2, …, m}) using a 5-point Likert scale, ranging 
from 1 (not important) to 5 (very important); for such rating, the 
input is solicited from k (k = {1, 2, …, n}) experts appropriately, 
such as with a questionnaire survey (Shao, Yuan, & Li, 2017);

2.	 processing of the input of each of the k experts via the Row 
Geometric Mean Method (RGMM) variation of the Analytical 
Hierarchy Process (AHP) (Ishizaka & Labib, 2011), to calculate 
each of wPI kgh , , which is the relative weight of the gth PI 
corresponding to the hth KPI according to the kth expert;

3.	 consolidation of all wPI kgh ,  for all n experts to calculate WPIgh, namely 
the relative weight of the gth PI corresponding to the hth KPI according 
to all experts, via an AHP results consolidation methodology 
developed by Goepel (2013) that incorporates the Eigenvector 
Method (EVM) variation of the AHP (Alonso & Lamata, 2006), and 
the Weighted Geometric Mean Method (WGMM) (Xu, 2000).

As mentioned above, the same procedure is implemented to calculate 
WKPIhu (the relative weight of the hth KPI connected to the uth bridge 
component), and Wcompu (the relative weight of the uth component about 
the bridge as a whole), where u = {1, 2, …, v}.
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After the assignment of all relative weights and following the steps of 
the SB Method, the values of actual measurement Pgh, standard practice

 Pgh*, and best practice Pgh
*  for each of the PIs are obtained; finally, the 

normalized value Pgh
norm of the gth PI affecting the hth KPI is computed 

(Mateus & Bragança, 2011).
Finally, the following boundary conditions are applied to produce  

Pgh
norm* the calibrated normalized values and their weighted aggregation 

into the KPIs, and to avoid distortions in the calculation of the Pgh
norm  

values: 
•• if

 
Pgh
norm > 1 2. 1.2, then Pgh

norm* = 1.2 (International Initiative..., 2009);
•• if Pgh

norm � �0 2. –0.2, then Pgh
norm* = –0.2 (International Initiative..., 2009);

•• if Pgh = Pgh* = Pgh
* , then Pgh

norm*

 
= 1;

•• if Pgh P P Pgh gh gh� �*
* Pgh* = Pgh
* , then Pgh

norm*

 
= 0;

•• in any other case Pgh
norm* = Pgh

norm > 1 2..

Having all Pgh
norm* values, the next steps presented in the sequence of 

implementation are:
•• the calculation of the quality performance of the hth KPI 

corresponding to the uth component,
•• the computation of the quality performance of the uth component, 

and
•• the calculation of the quality performance of the whole bridge as a 

system.
Qbridge  is the final deliverable of the showcased methodology. It is the 

qualitative normalized score depicting the quality performance of the 
bridge, regarding the relative KPIs and PIs.

2.	 Application of the methodology in the Strimonas 
Bridge case study and results

The Strimonas Bridge, which is depicted in Figure 1, is located at 
coordinates 40°48’4”N, 23°51’20”E. It intersects the Greek part of the 
Strimonas river, and is part of the 670-km-long Egnatia Motorway (from 
Igoumenitsa to Kipoi-Evros) that was designed, constructed and is 
operated by Egnatia Odos S.A. (Panetsos, 2017).

The Strimonas Bridge, which was constructed in 1987, is 240 m 
long, and the width of its pavement (including the sidewalks) is 12 m, 
providing two traffic lanes. It features eight 30  m long spans, and its 
deck comprises five precast prestressed concrete T-beams. It is founded 
on the riverbed of Strimonas with multi-column piers through piles; 
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upon the piers, the deck of the bridge is simply supported through NB1 
elastomeric bearings. Its expansion joints are elastomeric and of the 
T50 type. Finally, its identified components are the following: abutments, 
piers, superstructure, safety railings, sidewalks, pavement, and drainage 
system (Panetsos, 2017).

For the importance rating of the KPIs and components, a questionnaire 
survey was conducted between the three Egnatia Odos S.A. experts 
directly responsible for the inspection and rating of the Strimonas Bridge. 
The survey consisted of three sections, with the first one being the 
identity as shown in Table 1, and the rest featuring:

•• seven questions regarding the Likert importance of all KPIs for the 
quality rating of each component, and

Figure 1. The Strimonas Bridge (Panetsos, 2017)

Table 1. The identity of the questionnaire survey

Attributes of the respondents

Researcher Owner External partner

33.3% 33.3% 33.3%

Expertise of the respondents

Maintenance Analytical research Experimental research Design

100% 66.7% 33.3% 33.3%

Years of experience*

[5−10] [15−20]

66.7% 33.3%

Note: *Intervals are determined based on the actual values reported by the respondents  
in the survey.
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Table 2. Identified and discretized Performance Indicators for the Strimonas Bridge

Identified Performance 
Indicators

Key Performance Indicators Components

A C D E H I M P R S Se AB PI SU SR SI PA DS

Approach slab 
settlement

Asphalt pavement 
cracking

Asphalt pavement 
wearing and tearing

Asphalt pavement wheel 
tracking and undulation

Bearings deformation

Bearings displacement

Carbonation depth

Carrying capacity factor

Chloride content

Concrete cover 
(insufficient)

Condition rating

Corrosion (overall)

Corrosion related  
to prestressing steel

Corrosion stains related 
to protective coating

Corrosion related  
to reinforcement steel

Crack length 
(component-specific 
causes)

Crack orientation 
(component-specific 
causes)

•• one question regarding the Likert importance of the components 
for the quality rating of the whole bridge at the system level.

The discretization of the identified PIs between the respective KPIs 
and components is shown in Table 2.
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Identified Performance 
Indicators

Key Performance Indicators Components

A C D E H I M P R S Se AB PI SU SR SI PA DS

Crack spacing 
(component-specific 
causes)

Crack width  
(component-specific 
causes)

Cracks related  
to the origin (e.g., due  
to settlement)

Damping

Deterioration  
of protective coatings

Ductility

Frequency

Grouting deficiency

Inadequate clearance 
and accessibility

The insufficient height 
of the railing (safety 
barrier)

Joint deterioration

Loss of section

Misalignment

Pitted corrosion

Priority repair ranking

Probability of failure

Remaining service life

Sag and deformation 
and denivelation

Settlement

Sum of costs for repair 
of individual damages

Water penetrability

Waterproofing 
deterioration and loss

Note: A = Availability; C = Costs; D = Durability; E = Environment; H = Health; I = Inspection and Rating; 
M  = Maintainability; P = Politics; R = Reliability; S = Safety; Se = Security; AB  = Abutments; PI = Piers; SU = 
Superstructure; SR = Safety Railings; SI = Sidewalks; PA = Pavement; DS = Drainage System
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With all importance ratings obtained as above, the relative weights 
of all applicable PIs, KPIs, and components were calculated and then 
assigned with the process delineated in the Methodology section above.

After the assignment of all relative weights, the three values Pgh, Pgh*, 
Pgh

*  of each PI were derived from the visual inspection conducted in 2017, 
catastrophic and non-catastrophic (e.g., magnetic) laboratory tests, and 
structural health monitoring ambient vibration procedures performed 
on the bridge (Panetsos, 2017). With all the triplets of the values of the 
PIs obtained, Pgh

norm* was calculated. As an example, the values for all 
the PIs expressing the KPI “Durability” about the superstructure of the 
bridge are shown in Table 3.

After the calculation of Pgh
norm*, the quality performance of all KPIs 

corresponding to all components, of all components about the bridge 
in the system level, and of the whole bridge itself, were respectively 
computed. The results are summarily shown in Table 4.

For better comprehension of the deliverables of the methodology, 
Figure 2 is shown. In it, the individual quality scores of the components, 
their weighted significance, their total scores (namely, the products of 
the individual quality scores and the weighted significances), and their 
percentile participation in the quality score of the system level (Qbridge), 
are depicted.

Table 3. All values of the Performance Indicators expressing Key Performance 
Indicators “Durability” about the superstructure of the Strimonas Bridge

Performance Indicators Measurement Unit Pgh Pgh* Pgh
* Pgh

norm Pgh
norm*

Carbonation depth Carbonation depth mm 8 10 5 0.40 0.40

Chloride content Chloride content % 0.08 0.08 0.04 0 0

Concrete cover 
(insufficient)

Affected area % 20 5 0 -3 -0.20

Corrosion  
(prestressing steel)

Affected area % 10 1 0 -9 -0.20

Corrosion  
(reinforcement steel)

Affected area % 15 1 0 -14 -0.20

Crack width (shrinkage) Width mm 0.05 0.20 0 0.75 0.75

Crack width (longitudinal) Width mm 0.50 0.20 0 -1.50 -0.20

Grouting deficiency Strands % 10 5 0 -1 -0.20

Pitted corrosion Affected area % 15 5 0 -2 -0.20

Remaining service life Number of years year 15 28 48 -0.65 -0.20

Water penetrability Affected area % 100 10 0 -9 -0.20
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Table 4. Quality performance of the components  
and system of the Strimonas Bridge
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Notation Qabut Qpier Qsuper Qsrail Qside Qpave Qdrng

Qcompu 0.112 0.071 0.120 0.650 0.627 0.897 0.189

Wcompu 0.171 0.218 0.218 0.101 0.087 0.087 0.119

Qbridge 0.281

Figure 2. Spider graph depicting the scores, weighted significance, total 
scores, and total participation of the components in Qbridge
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The quality rating scale of the methodology, which is suggested 
for the interpretation of the final bridge quality score, is an adapted 
combination of the SB Method quality rating scale (Mateus & Bragança, 
2011), and the transposed scale used by Infraestruturas de Portugal 
for the quality rating and prioritization of existing Portuguese bridges 
(Amado, 2015). The final quality result is shown, along with the 
suggested rating scale, in Table 5.

As shown in Table 5, Qbridge = 0.281 translates into a “C” rating and 
marginally “Acceptable” quality performance. Critical to this generally 
poor score was, as shown in Table 4, the very low score and very high 
significance of the piers.

The official Sufficiency Rating (SR) of the Strimonas Bridge, as 
provided by Egnatia Odos S.A., is SR = 0.49, with the worst component 
Condition Rating (CR) belonging to the piers (CRpier = 0.333). When 
qualitatively comparing Qbridge to SR, and Qpier = 0.071 with CRpier, it is clear 
that the presented methodology is much more conservative in its quality 
appraisal than the one implemented by Egnatia Odos S.A. However, it is 
possible that direct comparison is unsuitable, as the criteria, the scales, 
and the composition rules of the rating methods are generally dissimilar.

Conclusions
1.	 The presented methodology, which appraises the quality of a 

bridge, offers a clear and systematic computational framework, 
having as deliverables the final bridge quality score at the system 
level, as well as the intermediate Performance Indicators, Key 
Performance Indicators, and component quality scores. Thus, the 
monitoring of the whole process is allowed.

2.	 It is highly customizable, allowing for the specific weight 
assignment and Performance Indicators identification and 
discretization.

Table 5. Qbridge and proposed quality bridge performance-rating scale

Qbridge Rating Characterization Interval

0.281

A+ Excellent (innovation) (Qbridge > 1.00)

A Good (best practice) (0.75 ≤ Qbridge ≤ 1.00)

B Adequate (0.50 ≤ Qbridge < 0.75)

C Acceptable (common practice) (0.25 ≤ Qbridge < 0.50)

D Poor (0.00 ≤ Qbridge < 0.25)

E Very poor (Qbridge < 0.00)
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3.	 It is, thus far, the only methodology appraising the quality of 
bridges, in which the measured values of the Performance 
Indicators are correlated with their benchmark values of expected 
and best achievable performance.

4.	 Its solicited subjective expert input is limited to the initial 
weighting procedures of the methodology and is only needed once 
per case study (except special or severe cases).

5.	 In the present case study of the Strimonas Bridge, the final 
bridge quality score of the methodology indicates a marginally 
acceptable, almost poor bridge condition. This indication is in 
accordance to the official Sufficiency Rating provided by Egnatia 
Odos S.A., which also indicates a marginally deficient bridge 
(0.49  < 0.50). Nonetheless, the score of the present methodology 
is more conservative than Sufficiency Rating , and even the 
structural condition rating applied by Egnatia Odos S.A. that is 
equal to the worst component Condition Rating (Condition Rating 
of the pier in the present case).

6.	 It is advised that more case studies, even featuring radically 
different bridge typologies, are carried out, for the further 
calibration of the presented methodology.
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