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Abstract. Principal Component Analysis is used for damage detection in 
structures excited by harmonic forces. Time responses are directly analysed 
by Singular Value Decomposition to deduct two dominant Proper Orthogonal 
Values corresponding to two Proper Orthogonal Modes. Damage index is defined 
by the concept of subspace angle that a subspace is built from the two Proper 
Orthogonal Modes. A subspace angle reflects the coherence between two 
different structural health states. An example is given through the application 
on a part of a real prestressed concrete bridge in Luxembourg where different 
damage states were created by cutting a number of prestressed tendons in 
four scenarios with increasing levels. Results are better by using excitation 
frequency close to an eigenfrequency of the structure. The technique is 
convenient for practical application in operational bridge structures.

Keywords: bridge structure, damage detection, forced harmonic excitation, 
principal component analysis, subspace angle, time response.
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Introduction

Both static and dynamic tests can be carried out to perform the 
monitoring of bridge structures. Static data are widely used to deduce 
deflection or inclination of bridges directly. Their measurement is 
quite fast and often implemented simultaneously with static load 
testing. Measurements in several positions in a bridge give a direct 
global vision of the structure (Nguyen, Schommer, Maas, & Zürbes, 
2016). Static load testing means generally charging with important 
weight, for example, some trucks or lorries/wagons, which are under 
or sometimes over the design load capacity of the structure. A series 
of instruments, e.g. transducer, levelling or other devices as laser scan, 
photogrammetry or GPS exist for measuring structural responses. The 
last-mentioned devices allow catching the observation of the whole 
structure easily. These visual devices appear very interesting for large 
structures with their practical advantages, but their precision plays a 
substantial role.

Dynamic tests show attractive aspects since they enable monitoring 
even with a few points of measurement. From vibrational data, dynamic 
features are identified for structural health monitoring (Peeters & 
De Roeck, 20-01). Some dynamic features are usually examined as 
eigenfrequency, mode shape and damping ratio. These features allow 
deducing other structural matrices namely stiffness and flexibility 
under certain conditions (Schommer, Mahowald, Nguyen, Waldmann, 
Maas, Zürbes, & De Roeck, 2017), or a variety of detection indexes. There 
are moreover some methods giving detection indexes directly without 
any modal identification. For example, based on Principal Component 
Analysis (PCA) – a multivariable statistical method that observation 
matrix can be in either time or frequency domain. Combining PCA 
with Hankel matrices of time data (Yan & Golinval, 2006), it is possible 
to characterise the dynamic behaviour of a structure and compare it 
to a reference state. The comparison is carried out with the help of 
some subspaces representing dynamic behaviour. In the frequency 
domain, Nguyen & Golinval (2010) decomposed Frequency Response 
Functions (FRFs) and sensitivity analysis in beam-like structures to 
localise and assess the damage. To deal with temperature effects, Yan, 
Kerschen, De Boe, & Golinval (2005) considered a series of frequencies 
in the observation matrix. The method was proven to be efficient for 
monitoring some real-life bridges in Nguyen, Mahowald, Golinval, & Maas 
(2014).

Kerschen & Golinval (2002) studied several cases of unforced/forced 
excitations and revealed that eigenmodes could be assessed by performing 
PCA on time responses. Some conditions are included: the structure is 
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lightly damped and unforced linear system; the harmonic force with 
constant amplitude and the mass matrix is proportional to identity as well 
as the number of samples is large enough. The analysis was performed 
more extensively for a damped truss structure in the laboratory 
subjected to harmonic excitation in (Golinval, 2017). The time responses 
of the structure were measured by both experiments and simulations 
based on experimentally assessed damping ratios. The present paper 
aims to exploit the mentioned method for real bridges, out of laboratory 
conditions. It deals with a part extracted from a real prestressed bridge 
undergoing several damage states. Sine swept vibrations of low rate 
excited the structure and interesting issues for detection are obtained.

1. Principal Component Analysis for responses  
to harmonic excitation

1.1. Principal Component Analysis in brief

Principal Component Analysis is as a multivariable statistical method 
and known as efficient for a compressed representation of data both in time 
and frequency domains, which is widely used for detection problems. A 
detailed description of the method was given in Kerschen & Golinval (2002) 
for general cases, and in Golinval (2017) for the case of harmonic excitation. 
In the present paper, PCA is briefly presented within the time domain.

Let us consider an observation matrix including the m vibrational 
signals sampled in N times X ϵ Rm×N with zero-mean normalisation. 
Proper orthogonal modes (POMs) and proper orthogonal values (POVs) 
is be assessed by PCA by performing the Singular Value Decomposition 
(SVD) on X:

 X = USVT (1)
where U and V are (m×m) and (N×N) orthogonal matrices respectively; 
S is an (m×N) diagonal matrix containing decreasing singular values. As 
shown in Kerschen & Golinval (2002), the columns of U correspond to 
POMs of the structure that each POM is associated to a POV, representing 
by the corresponding singular value in S. This value measures the energy 
ratio of the associated POM in comparison to the total energy and is 
defined by the sum of all POVs. The definition of POM is important in the 
vibrational analysis. Indeed, it is proven that the POMs converge to the 
eigenmodes in the case of un-damped and unforced linear system, when 
the mass matrix is proportional to identity and X contains a sufficient 
number of samples. 
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1.2. The case of harmonic excitation

The equation of motion for a damped system submitted to harmonic 
excitation is often written as below:
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where the diagonal matrix Nm×∈RI1 contains only two non-zero elements 
( ) seFHR  and ( ) ceFHI . H defines the matrix of FRFs, while ( ).R  and 

( ).I  present real and imaginary parts. ( ) ( )[ ]TNs tt  ωsin   ωsin 1 =e  and 

( ) ( )[ ]TNc tt  ω cos   ω cos 1 =e . Matrices A and B do not influence equation (3) 
since they are multiplied by zero elements in 1I , but they can be chosen to make 
U and V unitary matrices. By this way, Eq. (3) presents the SVD of the 

 (2)
where M, C, and K are the mass, damping and stiffness matrices 
respectively; x presents the vector of displacement; F and ω are 
amplitude and the frequency of the excitation.

It is proven by Golinval (2017) in the case of harmonic excitation; 
there are only two non-zero singular values (POVs). In this case, the 
forced harmonic responses are captured by only two POMs regardless of 
the number of measured signals.

 

Let us consider an observation matrix including the m vibrational signals 

sampled in N times Nm×∈RX with zero-mean normalisation. Proper 
orthogonal modes (POMs) and proper orthogonal values (POVs) is be assessed 
by PCA by performing the Singular Value Decomposition (SVD) on X: 

TVSUX =  (1) 

where U and V are (m×m) and (N× 𝑁𝑁𝑁𝑁) orthogonal matrices respectively; S is an 
(m× 𝑁𝑁𝑁𝑁 ) diagonal matrix containing decreasing singular values. As shown in 
Kerschen & Golinval (2002), the columns of U correspond to POMs of the 
structure that each POM is associated to a POV, representing by the 
corresponding singular value in S. This value measures the energy ratio of the 
associated POM in comparison to the total energy and is defined by the sum of 
all POVs. The definition of POM is important in the vibrational analysis. Indeed, 
it is proven that the POMs converge to the eigenmodes in the case of un-damped 
and unforced linear system, when the mass matrix is proportional to identity and 
X contains a sufficient number of samples.  

1.2. The case of harmonic excitation 

The equation of motion for a damped system submitted to harmonic excitation 
is often written as below: 

( )tωsinFxKxCxM =++ 
   (2) 

where M, C, and K are the mass, damping and stiffness matrices respectively; x 
presents the vector of displacement; F and ω are amplitude and the frequency of 
the excitation. 

It is proven by Golinval (2017) in the case of harmonic excitation; there are 
only two non-zero singular values (POVs). In this case, the forced harmonic 
responses are captured by only two POMs regardless of the number of measured 
signals. 

( )
( )

( )
( ) [ ]



    

T

T

c

c

s

s

V

B
e
e

e
e

S

I

U

A
FH
FH

FH
FHX
























= 1I

I
R
R

(3) 

where the diagonal matrix Nm×∈RI1 contains only two non-zero elements 
( ) seFHR  and ( ) ceFHI . H defines the matrix of FRFs, while ( ).R  and 

( ).I  present real and imaginary parts. ( ) ( )[ ]TNs tt  ωsin   ωsin 1 =e  and 

( ) ( )[ ]TNc tt  ω cos   ω cos 1 =e . Matrices A and B do not influence equation (3) 
since they are multiplied by zero elements in 1I , but they can be chosen to make 
U and V unitary matrices. By this way, Eq. (3) presents the SVD of the 

 
(3)

where the diagonal matrix 

Let us consider an observation matrix including the m vibrational signals 

sampled in N times Nm×∈RX with zero-mean normalisation. Proper 
orthogonal modes (POMs) and proper orthogonal values (POVs) is be assessed 
by PCA by performing the Singular Value Decomposition (SVD) on X: 

TVSUX =  (1) 

where U and V are (m×m) and (N× 𝑁𝑁𝑁𝑁) orthogonal matrices respectively; S is an 
(m× 𝑁𝑁𝑁𝑁 ) diagonal matrix containing decreasing singular values. As shown in 
Kerschen & Golinval (2002), the columns of U correspond to POMs of the 
structure that each POM is associated to a POV, representing by the 
corresponding singular value in S. This value measures the energy ratio of the 
associated POM in comparison to the total energy and is defined by the sum of 
all POVs. The definition of POM is important in the vibrational analysis. Indeed, 
it is proven that the POMs converge to the eigenmodes in the case of un-damped 
and unforced linear system, when the mass matrix is proportional to identity and 
X contains a sufficient number of samples.  

1.2. The case of harmonic excitation 

The equation of motion for a damped system submitted to harmonic excitation 
is often written as below: 

( )tωsinFxKxCxM =++ 
   (2) 

where M, C, and K are the mass, damping and stiffness matrices respectively; x 
presents the vector of displacement; F and ω are amplitude and the frequency of 
the excitation. 

It is proven by Golinval (2017) in the case of harmonic excitation; there are 
only two non-zero singular values (POVs). In this case, the forced harmonic 
responses are captured by only two POMs regardless of the number of measured 
signals. 

( )
( )

( )
( ) [ ]



    

T

T

c

c

s

s

V

B
e
e

e
e

S

I

U

A
FH
FH

FH
FHX
























= 1I

I
R
R

(3) 

where the diagonal matrix Nm×∈RI1 contains only two non-zero elements 
( ) seFHR  and ( ) ceFHI . H defines the matrix of FRFs, while ( ).R  and 

( ).I  present real and imaginary parts. ( ) ( )[ ]TNs tt  ωsin   ωsin 1 =e  and 

( ) ( )[ ]TNc tt  ω cos   ω cos 1 =e . Matrices A and B do not influence equation (3) 
since they are multiplied by zero elements in 1I , but they can be chosen to make 
U and V unitary matrices. By this way, Eq. (3) presents the SVD of the 

 contains only two non-
zero elements 

Let us consider an observation matrix including the m vibrational signals 

sampled in N times Nm×∈RX with zero-mean normalisation. Proper 
orthogonal modes (POMs) and proper orthogonal values (POVs) is be assessed 
by PCA by performing the Singular Value Decomposition (SVD) on X: 

TVSUX =  (1) 

where U and V are (m×m) and (N× 𝑁𝑁𝑁𝑁) orthogonal matrices respectively; S is an 
(m× 𝑁𝑁𝑁𝑁 ) diagonal matrix containing decreasing singular values. As shown in 
Kerschen & Golinval (2002), the columns of U correspond to POMs of the 
structure that each POM is associated to a POV, representing by the 
corresponding singular value in S. This value measures the energy ratio of the 
associated POM in comparison to the total energy and is defined by the sum of 
all POVs. The definition of POM is important in the vibrational analysis. Indeed, 
it is proven that the POMs converge to the eigenmodes in the case of un-damped 
and unforced linear system, when the mass matrix is proportional to identity and 
X contains a sufficient number of samples.  

1.2. The case of harmonic excitation 

The equation of motion for a damped system submitted to harmonic excitation 
is often written as below: 

( )tωsinFxKxCxM =++ 
   (2) 

where M, C, and K are the mass, damping and stiffness matrices respectively; x 
presents the vector of displacement; F and ω are amplitude and the frequency of 
the excitation. 

It is proven by Golinval (2017) in the case of harmonic excitation; there are 
only two non-zero singular values (POVs). In this case, the forced harmonic 
responses are captured by only two POMs regardless of the number of measured 
signals. 

( )
( )

( )
( ) [ ]



    

T

T

c

c

s

s

V

B
e
e

e
e

S

I

U

A
FH
FH

FH
FHX
























= 1I

I
R
R

(3) 

where the diagonal matrix Nm×∈RI1 contains only two non-zero elements 
( ) seFHR  and ( ) ceFHI . H defines the matrix of FRFs, while ( ).R  and 

( ).I  present real and imaginary parts. ( ) ( )[ ]TNs tt  ωsin   ωsin 1 =e  and 

( ) ( )[ ]TNc tt  ω cos   ω cos 1 =e . Matrices A and B do not influence equation (3) 
since they are multiplied by zero elements in 1I , but they can be chosen to make 
U and V unitary matrices. By this way, Eq. (3) presents the SVD of the 

  and 

Let us consider an observation matrix including the m vibrational signals 

sampled in N times Nm×∈RX with zero-mean normalisation. Proper 
orthogonal modes (POMs) and proper orthogonal values (POVs) is be assessed 
by PCA by performing the Singular Value Decomposition (SVD) on X: 

TVSUX =  (1) 

where U and V are (m×m) and (N× 𝑁𝑁𝑁𝑁) orthogonal matrices respectively; S is an 
(m× 𝑁𝑁𝑁𝑁 ) diagonal matrix containing decreasing singular values. As shown in 
Kerschen & Golinval (2002), the columns of U correspond to POMs of the 
structure that each POM is associated to a POV, representing by the 
corresponding singular value in S. This value measures the energy ratio of the 
associated POM in comparison to the total energy and is defined by the sum of 
all POVs. The definition of POM is important in the vibrational analysis. Indeed, 
it is proven that the POMs converge to the eigenmodes in the case of un-damped 
and unforced linear system, when the mass matrix is proportional to identity and 
X contains a sufficient number of samples.  

1.2. The case of harmonic excitation 

The equation of motion for a damped system submitted to harmonic excitation 
is often written as below: 

( )tωsinFxKxCxM =++ 
   (2) 

where M, C, and K are the mass, damping and stiffness matrices respectively; x 
presents the vector of displacement; F and ω are amplitude and the frequency of 
the excitation. 

It is proven by Golinval (2017) in the case of harmonic excitation; there are 
only two non-zero singular values (POVs). In this case, the forced harmonic 
responses are captured by only two POMs regardless of the number of measured 
signals. 

( )
( )

( )
( ) [ ]



    

T

T

c

c

s

s

V

B
e
e

e
e

S

I

U

A
FH
FH

FH
FHX
























= 1I

I
R
R

(3) 

where the diagonal matrix Nm×∈RI1 contains only two non-zero elements 
( ) seFHR  and ( ) ceFHI . H defines the matrix of FRFs, while ( ).R  and 

( ).I  present real and imaginary parts. ( ) ( )[ ]TNs tt  ωsin   ωsin 1 =e  and 

( ) ( )[ ]TNc tt  ω cos   ω cos 1 =e . Matrices A and B do not influence equation (3) 
since they are multiplied by zero elements in 1I , but they can be chosen to make 
U and V unitary matrices. By this way, Eq. (3) presents the SVD of the 

. H defines the matrix 
of FRFs, while 

Let us consider an observation matrix including the m vibrational signals 

sampled in N times Nm×∈RX with zero-mean normalisation. Proper 
orthogonal modes (POMs) and proper orthogonal values (POVs) is be assessed 
by PCA by performing the Singular Value Decomposition (SVD) on X: 

TVSUX =  (1) 

where U and V are (m×m) and (N× 𝑁𝑁𝑁𝑁) orthogonal matrices respectively; S is an 
(m× 𝑁𝑁𝑁𝑁 ) diagonal matrix containing decreasing singular values. As shown in 
Kerschen & Golinval (2002), the columns of U correspond to POMs of the 
structure that each POM is associated to a POV, representing by the 
corresponding singular value in S. This value measures the energy ratio of the 
associated POM in comparison to the total energy and is defined by the sum of 
all POVs. The definition of POM is important in the vibrational analysis. Indeed, 
it is proven that the POMs converge to the eigenmodes in the case of un-damped 
and unforced linear system, when the mass matrix is proportional to identity and 
X contains a sufficient number of samples.  

1.2. The case of harmonic excitation 

The equation of motion for a damped system submitted to harmonic excitation 
is often written as below: 

( )tωsinFxKxCxM =++ 
   (2) 

where M, C, and K are the mass, damping and stiffness matrices respectively; x 
presents the vector of displacement; F and ω are amplitude and the frequency of 
the excitation. 

It is proven by Golinval (2017) in the case of harmonic excitation; there are 
only two non-zero singular values (POVs). In this case, the forced harmonic 
responses are captured by only two POMs regardless of the number of measured 
signals. 

( )
( )

( )
( ) [ ]



    

T

T

c

c

s

s

V

B
e
e

e
e

S

I

U

A
FH
FH

FH
FHX
























= 1I

I
R
R

(3) 

where the diagonal matrix Nm×∈RI1 contains only two non-zero elements 
( ) seFHR  and ( ) ceFHI . H defines the matrix of FRFs, while ( ).R  and 

( ).I  present real and imaginary parts. ( ) ( )[ ]TNs tt  ωsin   ωsin 1 =e  and 

( ) ( )[ ]TNc tt  ω cos   ω cos 1 =e . Matrices A and B do not influence equation (3) 
since they are multiplied by zero elements in 1I , but they can be chosen to make 
U and V unitary matrices. By this way, Eq. (3) presents the SVD of the 

 and 

Let us consider an observation matrix including the m vibrational signals 

sampled in N times Nm×∈RX with zero-mean normalisation. Proper 
orthogonal modes (POMs) and proper orthogonal values (POVs) is be assessed 
by PCA by performing the Singular Value Decomposition (SVD) on X: 

TVSUX =  (1) 

where U and V are (m×m) and (N× 𝑁𝑁𝑁𝑁) orthogonal matrices respectively; S is an 
(m× 𝑁𝑁𝑁𝑁 ) diagonal matrix containing decreasing singular values. As shown in 
Kerschen & Golinval (2002), the columns of U correspond to POMs of the 
structure that each POM is associated to a POV, representing by the 
corresponding singular value in S. This value measures the energy ratio of the 
associated POM in comparison to the total energy and is defined by the sum of 
all POVs. The definition of POM is important in the vibrational analysis. Indeed, 
it is proven that the POMs converge to the eigenmodes in the case of un-damped 
and unforced linear system, when the mass matrix is proportional to identity and 
X contains a sufficient number of samples.  

1.2. The case of harmonic excitation 

The equation of motion for a damped system submitted to harmonic excitation 
is often written as below: 

( )tωsinFxKxCxM =++ 
   (2) 

where M, C, and K are the mass, damping and stiffness matrices respectively; x 
presents the vector of displacement; F and ω are amplitude and the frequency of 
the excitation. 

It is proven by Golinval (2017) in the case of harmonic excitation; there are 
only two non-zero singular values (POVs). In this case, the forced harmonic 
responses are captured by only two POMs regardless of the number of measured 
signals. 

( )
( )

( )
( ) [ ]



    

T

T

c

c

s

s

V

B
e
e

e
e

S

I

U

A
FH
FH

FH
FHX
























= 1I

I
R
R

(3) 

where the diagonal matrix Nm×∈RI1 contains only two non-zero elements 
( ) seFHR  and ( ) ceFHI . H defines the matrix of FRFs, while ( ).R  and 

( ).I  present real and imaginary parts. ( ) ( )[ ]TNs tt  ωsin   ωsin 1 =e  and 

( ) ( )[ ]TNc tt  ω cos   ω cos 1 =e . Matrices A and B do not influence equation (3) 
since they are multiplied by zero elements in 1I , but they can be chosen to make 
U and V unitary matrices. By this way, Eq. (3) presents the SVD of the 

 present real and imaginary parts. 

Let us consider an observation matrix including the m vibrational signals 

sampled in N times Nm×∈RX with zero-mean normalisation. Proper 
orthogonal modes (POMs) and proper orthogonal values (POVs) is be assessed 
by PCA by performing the Singular Value Decomposition (SVD) on X: 

TVSUX =  (1) 

where U and V are (m×m) and (N× 𝑁𝑁𝑁𝑁) orthogonal matrices respectively; S is an 
(m× 𝑁𝑁𝑁𝑁 ) diagonal matrix containing decreasing singular values. As shown in 
Kerschen & Golinval (2002), the columns of U correspond to POMs of the 
structure that each POM is associated to a POV, representing by the 
corresponding singular value in S. This value measures the energy ratio of the 
associated POM in comparison to the total energy and is defined by the sum of 
all POVs. The definition of POM is important in the vibrational analysis. Indeed, 
it is proven that the POMs converge to the eigenmodes in the case of un-damped 
and unforced linear system, when the mass matrix is proportional to identity and 
X contains a sufficient number of samples.  

1.2. The case of harmonic excitation 

The equation of motion for a damped system submitted to harmonic excitation 
is often written as below: 

( )tωsinFxKxCxM =++ 
   (2) 

where M, C, and K are the mass, damping and stiffness matrices respectively; x 
presents the vector of displacement; F and ω are amplitude and the frequency of 
the excitation. 

It is proven by Golinval (2017) in the case of harmonic excitation; there are 
only two non-zero singular values (POVs). In this case, the forced harmonic 
responses are captured by only two POMs regardless of the number of measured 
signals. 

( )
( )

( )
( ) [ ]



    

T

T

c

c

s

s

V

B
e
e

e
e

S

I

U

A
FH
FH

FH
FHX
























= 1I

I
R
R

(3) 

where the diagonal matrix Nm×∈RI1 contains only two non-zero elements 
( ) seFHR  and ( ) ceFHI . H defines the matrix of FRFs, while ( ).R  and 

( ).I  present real and imaginary parts. ( ) ( )[ ]TNs tt  ωsin   ωsin 1 =e  and 

( ) ( )[ ]TNc tt  ω cos   ω cos 1 =e . Matrices A and B do not influence equation (3) 
since they are multiplied by zero elements in 1I , but they can be chosen to make 
U and V unitary matrices. By this way, Eq. (3) presents the SVD of the 

 and 

Let us consider an observation matrix including the m vibrational signals 

sampled in N times Nm×∈RX with zero-mean normalisation. Proper 
orthogonal modes (POMs) and proper orthogonal values (POVs) is be assessed 
by PCA by performing the Singular Value Decomposition (SVD) on X: 

TVSUX =  (1) 

where U and V are (m×m) and (N× 𝑁𝑁𝑁𝑁) orthogonal matrices respectively; S is an 
(m× 𝑁𝑁𝑁𝑁 ) diagonal matrix containing decreasing singular values. As shown in 
Kerschen & Golinval (2002), the columns of U correspond to POMs of the 
structure that each POM is associated to a POV, representing by the 
corresponding singular value in S. This value measures the energy ratio of the 
associated POM in comparison to the total energy and is defined by the sum of 
all POVs. The definition of POM is important in the vibrational analysis. Indeed, 
it is proven that the POMs converge to the eigenmodes in the case of un-damped 
and unforced linear system, when the mass matrix is proportional to identity and 
X contains a sufficient number of samples.  

1.2. The case of harmonic excitation 

The equation of motion for a damped system submitted to harmonic excitation 
is often written as below: 

( )tωsinFxKxCxM =++ 
   (2) 

where M, C, and K are the mass, damping and stiffness matrices respectively; x 
presents the vector of displacement; F and ω are amplitude and the frequency of 
the excitation. 

It is proven by Golinval (2017) in the case of harmonic excitation; there are 
only two non-zero singular values (POVs). In this case, the forced harmonic 
responses are captured by only two POMs regardless of the number of measured 
signals. 
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where the diagonal matrix Nm×∈RI1 contains only two non-zero elements 
( ) seFHR  and ( ) ceFHI . H defines the matrix of FRFs, while ( ).R  and 

( ).I  present real and imaginary parts. ( ) ( )[ ]TNs tt  ωsin   ωsin 1 =e  and 

( ) ( )[ ]TNc tt  ω cos   ω cos 1 =e . Matrices A and B do not influence equation (3) 
since they are multiplied by zero elements in 1I , but they can be chosen to make 
U and V unitary matrices. By this way, Eq. (3) presents the SVD of the 

. Matrices 
A and B do not influence equation (3) since they are multiplied by zero 
elements in I1, but they can be chosen to make U and V unitary matrices. 
By this way, Eq. (3) presents the SVD of the observation matrix X. The 
first column vectors (POMs) of U, corresponding to the first non-zero 
elements of S, can represent the dynamic characteristics of the system. 
Each POM is a combination of all eigenmodes. However, it may tend to the 
shape of a mode of which the eigenfrequency is close to the frequency of 
excitation.

1.3. Damage index based on subspace angle 

A given health structural state of a system can be represented by 
the active POMs assessed by PCA, including two components when 
the excitation is harmonic. The two POMs (the first two columns of U), 
considered as active modes and are used to construct active subspaces 
(which reflect states of the system) at different moments. A change in the 
dynamic behaviour modifies consequently the state of the system, reflected 
by the POMs. This change may be estimated using the concept of subspace 
angle introduced by Golub & Van Loan (1996). This concept allows 
quantifying existing spatial coherence between two vibrational data sets.
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The largest singular value is thus related to the largest angle 
characterising the geometric difference between two subspaces. 
An example is given in Figure 1 for 2-dimensional active subspaces 
(hyperplanes), following a dynamic change.

2. Application

2.1. Harmonic exciters and the testing structure

In University of Luxembourg (UL), the research on bridge monitoring 
has been carried out since more than one decade. In real circumstances, 
the complexity of the monitoring is envisaged, e.g. different conditions 
of temperature, bearing or foundation situation, excitation level. 
The research team in the UL used forced harmonic exciters while 
implementing dynamic tests for bridge structures in Luxembourg for the 
sake of controlling excitation forces. Two exciters were built and used for 
different ranges of frequency and amplitude forces to assure an equivalent 
excitation for different tests (Maas, Zürbes, Waldmann, Waltering, 

Figure 1. Angle   formed by active subspaces  representing the reference  
and current states
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Bungard, & De Roeck, 2012). It consists in an eccentric mass exciter (force 
amplitudes above 10 kN for f > 4 Hz) and an electromagnetic exciter with a 
feedback control loop (force amplitudes up to 2.7 kN) presented in Figures 
2a and 2b. The advantage while keeping the same amplitude of excitation 
is the level of responses is equivalent, which makes easier the comparison 
among different damage states. It is feasible to complete modal testing for 
a bridge in one day by two persons with a real measurement time of a few 
minutes. The transport is possible with a small lorry, and the system is 
installed at the site on the sidewalk. When everything is ready, the traffic 
is stopped during a few minutes to execute the measurements. This key 
feature enables minimising measurement noise, and the dependency on 
the excitation force is excluded. Moreover, only short-time measurements 
are needed, as a clear generation of measurable and adjustable harmonic 
swept sine excitation are introduced as input forces into the structure.

The structure to test is a part of a real prestressed concrete bridge 
built in Luxembourg during the 1950s and demolished in 2013. 
Therefore, the UL had an opportunity to perform a series of tests in 

a) eccentric mass exciter b) electromagnetic 
exciter

c) test set-up

Figure 2. Forced harmonic exciters and the test set-up

Figure 3. Process of tests
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a piece of this bridge, as shown in Figure 2c. Good results of static 
loading tests were reported recently in Nguyen, Schommer, Maas, & 
Zürbes (2016) and Schommer, Nguyen, Maas, & Zürbes (2017). The 
current paper presents some results accordingly from the dynamic test, 
performed by the shaker shown in Figure 2b.

Both static and dynamic tests were realised throughout the initial 
and damaged states of the bridge. Damages were created by cutting a 
number of prestressed tendons. The Table 1 describes the examined 
damage scenarios by the cutting from the 19 prestressed tendons. 
Horizontal cracks appeared from the first damage scenario and vertical 
cracks only from the third scenario.

Vibrational tests were performed with swept sine excitations with 
the amplitude of 2000 N and frequency varied from 2.5 Hz to 25 Hz 
with a weak rate of 0.02 Hz/s. Responses were sampled at an interval 
∆t = 0.0004 s. It implies that a time response of 2500 samplings may 
relate to unchanged excitation frequency or a maximum difference 
of 0.02 Hz. Referring to Eq. (2), such a period can be considered as 
constant excitation frequency and so as harmonic excitation. Its number 
of samples is still large enough for the statistical requirement of PCA. 
Moreover, since the amplitude of the excitation was kept constant, a 
zero-mean normalisation for the data is no longer necessary. Principal 
Component Analysis is performed based on 11-time responses recorded 
along the longitudinal axis of the structure.

2.2. Results

All different health conditions from the initial situation #0 to the 
most serious damage #4 are processed and laid together. For analysis, 
all states are examined by periods of which the frequency of excitation 
comes close a structural eigenfrequency. Figure 4 displays the POVs 
of every state while considering time signals according to excitation 
frequency nearby the first structural eigenfrequency of about 3 Hz. The 
SVD was carried out for the observation matrix. It is shown that the first 
POD holds the most important energy as the corresponding POV keeps 
more than 90% of the total 11 POVs. Values decrease typically from the 
third POV, which means only two POVs are significant. The remaining 
POVs, despite their minor non-zero values, are supposed as noisy 
existing in real measurements and insignificant. 

Table 1. Damage scenarios

Scenario # 0 1 2 3 4

Number of tendons cut 0 2 4 6 ≈9
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Figure 4 reveals clearly that the first POV is reduced when the level of 
damage increases. An overall view shows three grades including similar 
values: the initial state #0 and the lowest level #1, damages #2 and 
#3 while all tests #4 have the smallest POVs. This grading may relate 
to the monotonous reduction of the first Eigen frequency as shown in 
Figure 5. 

With periods of which the excitation frequency is nearby higher 
eigenfrequency, the evolution of the POVs does not reveal a clear trend 
relating to the levels of damage. Correspondingly, the reduction of higher 
eigenfrequency is smaller and much less monotonous.

Figure 4. Proper orthogonal values (POV) of all damage states

Figure 5. Changes of the first eigenfrequencies ∆f1 identified throughout  
the whole test
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Figure 6 . Damage indexes by subspace angles, the frequency of excitation  
is nearby f1

Figure 7. Damage indexes by subspace angles, the frequency of excitation  
is nearby f2
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By taking into account the first two POMs for each health state, it 
is possibly characterised by a subspace of two vectors. The concept of 
subspace angle allows quantifying the coherence of different states.

Subspace angles are presented in Figures 6 and 7 when considering 
excitation frequencies near the first and second eigenfrequencies 
respectively. These detections are better than other periods.

The examination of Figure 6, while the excitation frequency being 
nearby the first eigenfrequency, and both two images give quite a good 
detection. Based on subspaces built from only the first POM or two 
POMs, damages are noticed from damage state #3 and damage #4 has 
very distinct indexes. On the other hand, Figure 7 presents the case 
when the excitation frequency is around the second resonance. Based on 
only the first POM or two POMs, the last damage #4 does not correspond 
to highest indexes, but damage can be detected from #1. The first test 
of #1 is not distinguished from the initial state #0; maybe this test was 
performed just after the cutting of two tendons, before the loading of the 
static test. The two following tests of #1 give larger indexes due to the 
crack extension after the static loading, which was finished before these 
two vibrational tests.

Conclusions

1. The paper deals with the detection problem in considering 
vibrational responses from swept sine excitations with low sweep 
rate in a real ridge structure. Although the testing was carried out 
in a part extracted from an intact bridge, a similar test procedure 
can be realised in an operational bridge. In operational condition, it 
is possible to stop the traffic for a few minutes because vibrational 
measurements last less than a half hour.

2. Since noise always exists, there are more than two non-zero proper 
orthogonal values. However, the first two proper orthogonal values 
are the most dominant. It is proven when the excitation frequency 
is nearby an eigenfrequency, the first proper orthogonal value 
often occupies more than 95% of the total energy, and the damage 
detection is more efficient.
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