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Abstract. Artificial Neural Networks represent useful tools for several 
engineering issues. Although they were adopted in several pavement-engineering 
problems for performance evaluation, their application on pavement structural 
performance evaluation appears to be remarkable. It is conceivable that defining 
a proper Artificial Neural Network for estimating structural performance in 
asphalt pavements from measurements performed through quick and economic 
surveys produces significant savings for road agencies and improves maintenance 
planning. However, the architecture of such an Artificial Neural Network must 
be optimised, to improve the final accuracy and provide a reliable technique for 
enriching decision-making tools. In this paper, the influence on the final quality 
of different features conditioning the network architecture has been examined, 
for maximising the resulting quality and, consequently, the final benefits of the 
methodology. In particular, input factor quality (structural, traffic, climatic), 
“homogeneity” of training data records and the actual net topology have been 
investigated. Finally, these results further prove the approach efficiency, for 
improving Pavement Management Systems and reducing deflection survey 
frequency, with remarkable savings for road agencies.

Keywords: Artificial Neural Network (ANN), asphalt pavement, Long Term 
Pavement Performance (LTPP), neural network optimisation, Pavement 
Management System (PMS), structural performance.
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Introduction

Pavement Management Systems (PMSs) are practical tools for 
road agencies, as they simplify road network administration and 
represent potential decision supporting tools for budget allocation and 
maintenance planning. However, their reliability and effectiveness 
are strictly related to the level of knowledge of the infrastructure 
asset characteristics. It is essential for road agencies, indeed, to rely 
their PMSs on exhaustive databases including information on the main 
pavement performance parameters (structural and functional) and the 
performed maintenance and rehabilitation activities. However, these 
datasets must be updated and fed continuously, allowing operators 
to know the deterioration trend of the performance parameters. This 
practice improves maintenance effectiveness and reduces diseconomies 
in budget allocation, increasing user satisfaction.

Modern survey methodologies guarantee economic and reliable 
high-performance data collection for roughness, texture, friction, 
or surface distresses − using high-speed profilers or laser-lightning 
detection systems (Sollazzo, Wang, Bosurgi, & Li, 2016; Wang, 2011). 
However, the evaluation of pavement structural performance is 
generally based on deflection measurements performed using the 
Falling Weight Deflectometer (FWD). These test procedures are 
slow, expensive, and cause adverse effects on traffic, due to the stop-
and-go procedure (Elseifi, Abdel-Khalek, & Dasari, 2012; Rada, Perera, 
& Prabhakar, 2012). Despite the introduction of the Rolling Weight 
Deflectometer (RWD) equipment, the FWD methodology is still more 
widespread and reliable.

Then, road agencies likely need novel techniques for reducing 
deflection survey frequency and, thus, costs and interferences on 
traffic, assuring an adequate knowledge of the pavement structural 
performance. Although some authors tried to correlate functional 
to structural parameters for simplifying the problem, some direct 
mechanical correlations among specific parameters (such as roughness 
and structural capacity) are still undefined and unclear (Bianchini 
& Bandini, 2010; Rada, Perera, & Prabhakar, 2012; Zhang, Manuel, 
Damnjanovic, & Li, 2003), increasing analytical issues. Moreover, 
the problem is remarkably complex, and it is impractical to rely on 
mechanical-based evolution models requiring consistent computational 
and economic efforts. Because of this, various researchers proposed 
the introduction of structural performance indices in pavement 
management systems and developed numerical estimation models 
(Agarwal, Das, & Chakroborty, 2006; Tosti, Ciampoli, D’Amico, Alani, & 
Benedetto, 2018; Wu, Zhang, & Abadie, 2012).
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However, the problem complexity and the lack of knowledge in 
some of the physical and mechanical relationships among the involved 
processes suggest the adoption of numerical and advanced “machine 
learning” approaches – and, in particular, Artificial Neural Networks 
(ANNs) – for solving the issue (Adeli, 2001). As it is known, ANNs have 
been widely applied in different areas of civil engineering (for example, 
structural, construction, environmental, geotechnical and infrastructure 
engineering) with positive results (Bosurgi & Trifirò, 2005; Bosurgi, 
D’Andrea, & Pellegrino, 2013; Ceylan, Bayrak, & Gopalakrishnan, 2014; 
Fwa & Chan, 1993; He, Qi, Hang, Zhao, & King, 2014; Pozarycki, 2015; 
Roberts & Attoh-Okine, 1998; Terzi, 2007). 

Considering pavement engineering, numerous efforts have been 
spent on evaluating pavement functional performance using ANN (Attoh-
Okine, 1994; Eldin & Senouci, 1995; Shekharan, 1999; Terzi, 2007; Ziari, 
Sobhani, Ayoubinejad, & Hartmann, 2016). However, in terms of structural 
performance evaluation, ANNs were adopted only for layer moduli 
estimation, back-calculation procedures or deflection measure processing 
(Plati, Georgiou, & Papavasiliou, 2016; Rakesh, Jain, Reddy, M., & Reddy, 
A., 2006; Yi, Kim, Y., Mun, & Kim, J., 2010). Consequently, by applying 
ANN potentiality to this issue also, it is possible to define useful models 
for assuring high levels of quality and accuracy to the final estimation 
of the pavement structural performance. In particular, ANNs seem to 
be useful for estimating asphalt pavement structural performance, 
considering specific influencing external factors (climatic, traffic, layers) 
and functional indices of the pavement, for reducing expensive and 
time-consuming deflection tests. However, the method is complicated 
and, thus, different aspects regarding the involved factors, the database 
characteristics and the net architecture obviously affect the final accuracy 
of the methodology. Then, it is important to optimise the architecture of 
such a network, investigating the possible advantages and drawbacks of 
different possible network configurations, for increasing the reliability 
of the final evaluation. At this regard, performing various tests and 
experimentations helps to deeply clarify the methodology potential and 
determine the choices increasing the approach accuracy and reliability.

Then, in this paper, the authors analyse the numerical reaction to 
different network parameters of an ANN defined for the estimation 
of asphalt pavement structural performance (considered regarding 
effective Structural Number SNeff (Transportation Officials, 1993)). The 
improved methodology, applied in Pavement Management Systems, 
simplifies pavement maintenance planning and analysis, due to the 
possible consequent reduction in the frequency of FWD deflection tests. 
In periods among two performed deflection tests, in fact, by using the 
proposed approach, the structural performance derived directly from 
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available data (functional, geometrical, climatic, and traffic information), 
more economical, faster, and more efficient. In detail, for an appropriate 
methodology optimization, different aspects are examined for assessing 
their influence on the model accuracy such as: 

•• the selection of the most appropriate factors;
•• the ANN architecture;
•• the dataset homogeneity;
•• the combination of different ANN in “committees of ANNs”, for 

better coverage of the entire solution space.
In the following Sections, after brief theoretical notices on the ANNs, 

the results of several numerical tests are evaluated and discussed to 
assess efficiency and feasibility of the different net configurations.

1.	 Artificial Neural Networks and “committees  
of Artificial Neural Networks”

Artificial Neural Networks are computational models defined in 
analogy with the brain biological characteristics to simulate its decision 
process. They are used to approximate and estimate unknown functions 
depending on various and numerous input values, for solving complex 
and nonlinear problems using only elementary mathematical operations 
(Graupe, 2013; Priddy & Keller, 2005). In particular, ANNs represent a 
“black-box” approach, since the results are produced neglecting the input-
output causal relationships (Rohani, Abbaspour-Fard, & Abdolahpour, 
2011). In big-data analyses, the method potentiality is convenient and 
assures the development of generalised solutions to complicated problems 
using large sets of example data (Flood & Kartam, 1994).

The Multilayer Feed-forward Neural Network (MFNN) is the most 
common type of ANN and includes three kinds of layers of interconnected 
neurons: input, hidden, and output layers. Each neuron processes the 
received inputs and, according to a properly defined activation function, 
produces an output. The neuron output is transmitted to the following 
neurons through specific connections defining the network topology. Each 
connection is associated with a specific weight (wi), which amplifies or 
reduces the input. For each neuron, the inputs (xi)-output(yi) relationship 
is defined using a specific transfer function, which usually has the logistic 
sigmoidal shape as follows, Eq. (1):

	

and assures the development of generalised solutions to complicated problems 
using large sets of example data (Flood & Kartam, 1994). 

The Multilayer Feed-forward Neural Network (MFNN) is the most common 
type of ANN and includes three kinds of layers of interconnected neurons: input, 
hidden, and output layers. Each neuron processes the received inputs and, 
according to a properly defined activation function, produces an output. The 
neuron output is transmitted to the following neurons through specific 
connections defining the network topology. Each connection is associated with a 
specific weight (wi), which amplifies or reduces the input. For each neuron, the 
inputs (xi)-output(yi) relationship is defined using a specific transfer function, 
which usually has the logistic sigmoidal shape as follows, Eq. (1): 

𝑓𝑓𝑓𝑓(𝐼𝐼𝐼𝐼) = 1
1+𝑒𝑒𝑒𝑒−𝐼𝐼𝐼𝐼

 (1) 

where I = Σwixi is the sum of the weighted inputs xi produced by the 
previous neurons. 

In a “supervised approach” – such as MFNN −, given a large set of input and 
output data, the training procedure consists in the modulation of the various 
weights to produce acceptable outputs. The results are expected to be very similar 
to the output provided for training. Usually, the training phase is performed using 
a back propagation model (Doughty, 1997) allowing the network to adjust the 
weights in a reverse direction, distributing the error among the different neurons 
and minimising it after each iteration. 

To increase the efficiency of ANNs, different researchers have proposed novel 
approaches by combining the results of different networks (Alexandre, Campilho, 
& Kamel, 2000; Hashem, 1997; Hashem & Schmeiser, 1995; Kuncheva, 2002). 
Among the various proposed methods, a simple solution consists of averaging the 
results of several ANNs, trained in parallel using different records, randomly 
extracted from the same dataset (Figure 1). In detail, each generated network is 
characterised by a different assignment of the available records to the training, 
validation, and test pools. This random procedure generates different networks, is 
expected to provide different estimates of the output variable. In this way, the 
outcome better represents the entire variable space, avoiding mistakes and 
inaccuracies possibly affecting a single net, even “the best”. 

	 (1)

where I = Σwixi is the sum of the weighted inputs xi produced by the 
previous neurons.
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In a “supervised approach” – such as MFNN −, given a large set of 
input and output data, the training procedure consists in the modulation 
of the various weights to produce acceptable outputs. The results are 
expected to be very similar to the output provided for training. Usually, 
the training phase is performed using a back propagation model 
(Doughty, 1997) allowing the network to adjust the weights in a reverse 
direction, distributing the error among the different neurons and 
minimising it after each iteration.

To increase the efficiency of ANNs, different researchers have 
proposed novel approaches by combining the results of different 
networks (Alexandre, Campilho, & Kamel, 2000; Hashem, 1997; Hashem 

Figure 1. Representation of an Artificial Neural Network Committee
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& Schmeiser, 1995; Kuncheva, 2002). Among the various proposed 
methods, a simple solution consists of averaging the results of several 
ANNs, trained in parallel using different records, randomly extracted 
from the same dataset (Figure 1). In detail, each generated network is 
characterised by a different assignment of the available records to the 
training, validation, and test pools. This random procedure generates 
different networks and is expected to provide different estimates of the 
output variable. In this way, the outcome better represents the entire 
variable space, avoiding mistakes and inaccuracies possibly affecting a 
single net, even “the best”.

2.	 Training database

The training database represents the core element of the 
methodology. As discussed in Section 3, the quality of the model is 
strictly related to the available data characteristics. Three are the main 
aspects of the dataset definition:

•• influencing input factors; 
•• database size;
•• record “homogeneity”.

In general, owing to the relationship complexity and the specific 
features of the ANN, the dataset is expected to contain numerous 
significant variables affecting the structural performance. Apparently, 
as stated in previous studies, the higher the influence of the included 
variable on the output parameter, the more reliable the final result. 
Further, to produce a general model and guarantee an exhaustive 
ANN training in the entire solution space, it is essential to define an 
extensive and well-distributed dataset of road sections, to avoid model 
specification on reduced data sample. Finally, as a counterpart of 
the previous point, the higher the heterogeneity level of the adopted 
records – because of the characteristics of the analysed road network −, 
the lower the accuracy of the numerical correlation.

The LTPP database has been considered in the study to define an 
appropriate dataset in compliance with the previous requirements, as it 
contains several structural, traffic, climatic, and performance types of 
information related to over 2,500 North-American highway test sections 
for more than 25 years. The LTPP program was established as a part of the 
Strategic Highway Research Program (SHRP) and has been widely used as 
a reference database for analytical model definition and validation (Park, 
Thomas, and & Wayne Lee, 2007; Rada, Perera, & Prabhakar, 2012; Wang 
& Li, 2011). Maintenance and rehabilitation operations have been excluded 
from the dataset, i.e., for each section, the measurements following 
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the first maintenance operation have been excluded. The structural 
performance – representing the output variable – is evaluated in terms of 
effective Structural Number, according to the formulation provided by the 
AASHTO Guide for Design of Pavement Structures (Transportation Officials, 
1993). Regarding the record size and features, different configurations 
have been adopted in the present work, in compliance with the specific 
research needs, as described in the following Section.

Concerning the input variables, the investigation starts from 12 “base 
factors” (Figure 2), previously selected in a similar ANN application 
(Sollazzo, Fwa, & Bosurgi, 2017).

These base factors, considered as a preliminary reference, were 
selected for representing significant variables related to traffic, climate, 
the structural configuration of the pavement section and functional 
performance and because they are expected to strongly condition the 
structural performance variations:

1.	 Structural parameters:
•• pavement total thickness (H) in inches, including asphalt layers 

and eventual subbase;
•• asphalt layer thickness (Ha) in inches;

2.	 Traffic parameters:
•• an average of annual ESALs (Equivalent Single Axle Load) in 

thousands in the LTPP lane (kE);
•• an average of the estimated annual average daily number of 

trucks in the LTPP lane (Tr);
3.	 Climatic parameters:

•• average temperature (Tm), i.e., the mean of the annual average 
temperatures on the selected section in Celsius degrees;

Figure 2. Artificial Neural Network “base factors”
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•• standardised temperature range (T*), as a measurement of the 
temperature oscillation; this parameter has been evaluated 
using Eq. (2), where Tmax and Tmin are, respectively, the mean 
values of the annual maximum and the annual minimum 
temperature in Celsius degrees

	

− average temperature (Tm), i.e., the mean of the annual average 
temperatures on the selected section in Celsius degrees; 

− standardised temperature range (T*), as a measurement of the temperature 
oscillation; this parameter has been evaluated using Eq. (2), where Tmax 
and Tmin are, respectively, the mean values of the annual maximum and the 
annual minimum temperature in Celsius degrees; 

𝑇𝑇𝑇𝑇∗ = 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚

 (2) 

− the average number of days with average annual temperature over 32 °C 
in a year (D32); 

− the average number of days with average annual temperature below 0 °C 
in a year (D0); 

4. Performance parameters: 
− time passed (Y) since the first profilometer survey in years for each 

section; 
− the first measured International Roughness Index (IRI) for each section 

(IRI0) – i.e., the IRI measured at year zero −, as starting reference value; 
− IRI value at a specific time for each section (average of left and right wheel 

path IRI); 
− SNeff at a specific time, according to the formulation provided by the 

AASHTO Guide for Design of Pavement Structures (Transportation 
Officials, 1993) as a function of deflection test measurements and 
pavement thickness; 

− the average pavement surface temperature (Tt) of the section during the 
deflection test phase in Celsius degrees. 

In addition to these base factors, two novel factors, with a considerable 
theoretical influence on the structural performance, have also been included in the 
dataset, for further analysis and investigation: 

− subgrade resilient modulus (MR); it is a structural parameter estimated 
through the procedure proposed in the AASHTO Guide for Design of 
Pavement Structures (Transportation Officials, 1993) for the SNeff 
evaluation; 

− annual average precipitation height (Pr); it is a climatic parameter defined 
as the average of the precipitation heights (in mm) measured in the road 
section. 

3. Numerical analysis 

Several ANN architecture configurations have been considered to evaluate the 
influence of different aspects on the method accuracy. However, for simplifying 
the analysis, some general issues have been maintained invariant for all tests. The 
general architecture of the ANN is represented in Figure 3 (the target variable is 
always the SNeff). For all the ANNs, the considered records have been randomly 
divided among the training (70%), validation (15%), and test (15%) groups. 
Training was performed using the Levenberg-Marquardt algorithm and 
performance was measured concerning the Mean Square Error (MSE). The 

;	 (2)

•• the average number of days with average annual temperature 
over 32 °C in a year (D32);

•• the average number of days with average annual temperature 
below 0 °C in a year (D0);

4.	 Performance parameters:
•• time passed (Y) since the first profilometer survey in years for 

each section;
•• the first measured International Roughness Index (IRI) for 

each section (IRI0) – i.e., the IRI measured at year zero −, as 
starting reference value;

•• IRI value at a specific time for each section (average of left and 
right wheel path IRI);

•• SNeff at a specific time, according to the formulation provided 
by the AASHTO Guide for Design of Pavement Structures 
(Transportation Officials, 1993) as a function of deflection test 
measurements and pavement thickness;

•• the average pavement surface temperature (Tt) of the section 
during the deflection test phase in Celsius degrees.

In addition to these base factors, two novel factors, with a 
considerable theoretical influence on the structural performance, have 
also been included in the dataset, for further analysis and investigation:

•• subgrade resilient modulus (MR); it is a structural parameter 
estimated through the procedure proposed in the AASHTO Guide 
for Design of Pavement Structures (Transportation Officials, 1993) 
for the SNeff evaluation;

•• annual average precipitation height (Pr); it is a climatic parameter 
defined as the average of the precipitation heights (in mm) 
measured in the road section.

3.	 Numerical analysis

Several ANN architecture configurations have been considered to 
evaluate the influence of different aspects on the method accuracy. 
However, for simplifying the analysis, some general issues have been 
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maintained invariant for all tests. The general architecture of the ANN 
is represented in Figure 3 (the target variable is always the SNeff). For 
all the ANNs, the considered records have been randomly divided 
among the training (70%), validation (15%), and test (15%) groups. 
Training was performed using the Levenberg-Marquardt algorithm and 
performance was measured concerning the Mean Square Error (MSE). 
The different aspects analysed in this paper, are discussed separately in 
the following Subsections.

3.1.	 Factor influence

By considering the variables introduced in Section 2, different 
architectures have been defined to further prove the influence of the 
various factors and verify the following assumptions:

1)	 adding other factors to the variable pool increases the correlation 
accuracy;

2)	 the more appropriate the factor selection (regarding influence on 
the output variable), the higher the resulting quality;

3)	 less strongly correlated factors are more efficient than many 
weakly correlated factors.

In detail, considering a starting dataset of 1021 records, four ANNs 
have been defined for exploring different scenarios and proving the 
previous assumptions:

•• R – “reference net”: network trained considering all the base 
factors (12 factors);

Figure 3. The general architecture of the Artificial Neural Network
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•• F1: network trained excluding climatic factors (Tm, T*, D0, D32) from 
the base factors (8 total factors);

•• F2: network trained adding the two novel parameters introduced 
in Section 2 (MR, Pr) to the base factors (14 total factors);

•• F3 – network trained considering the 12 factors (among the total 
14 available) with the highest correlation with SNeff; compared to 
R, Y and T* were replaced by the two novel parameters (MR, Pr), 
according to the correlation rank (Pearson correlation coefficient) 
reported in Figure 4.

The results of the four ANNs are compared in Figures 5 and 6, in 
which the regression charts of the four nets (comparing target vs output 
values) and the related MSE values are shown respectively. Both Figures 
provide a clear validation of all the hypotheses: the R2 values evidence 
a better performance of F2 and F3 than R, and, despite the exclusion of 
two factors, F3 assures higher accuracy than F2. F3 overtakes F2 because 
probably the influence of the excluded factors is negligible. On the 
contrary, the exclusion of significant factors, as all the climatic ones, 
causes a sensible reduction of the model precision, as proved by the poor 
performance of net F1.

In general, the results confirmed the input variable choice generally 
conditions the final quality of the model on the same dataset. In detail, 
the factor selection requires relevant accuracy, in compliance with the 
following suggestions:

•• selecting factors likely conditioning the mechanical performance 
of the pavements increases the result accuracy significantly. 
This outcome has been proved in two ways. Considering F1, it is 
possible to assess that excluding very relevant factors (such as 

Figure 4. Correlation values among the various factors and SNeff
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climatic ones) drastically reduces the numerical precision (R2 for 
F1 is 6% lower than for R). On the contrary, introducing strongly 
influencing parameters (MR and Pr) in nets F2 and F3 caused a 
very significant improving (MSE for F2 and F3 is almost half than 
for R);

•• a simple increase in the factor number is sometimes unproductive 
and disadvantageous. The comparison between F2 and F3 
evidences that, although the simplistic introduction of the novel 
parameters improves the correlation accuracy (compared to 
R), a smarter definition of the input variable group is more 
reliable. Even if F3 results are only slightly better than F2, the F3 
architecture results optimized, involving fewer parameters, 
reducing computational and dataset management issues.

For more clarity, these factors simply represent a preliminary 
selection for investigating network behaviour and architecture. They 
are only some of the parameters influencing the pavement structural 
performance, and they can be further changed and improved for 
increasing quality. However, they have been selected as a starting point, 
but future researches are expected to improve the method including 
in the analysis other significant parameters, especially performance 
indicators (as cracking, rutting), with expected positive results.

Figure 5. Regression charts for R, F1, F2, and F3

a) R Total: R2 = 0.880 b) F1 Total: R2 = 0.829

c) F2 Total: R2 = 0.934 d) F3 Total: R2 = 0.948
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3.2.	 Record homogeneity influence

The ANN methodology represents a big-data approach and, thus, the 
resulting quality is strictly related to the quality of the initial dataset, 
mainly because of the lack of physical links with some of the involved 
phenomena (in particular, when numerous and different parameters 
are evaluated together). Obviously, the final accuracy depends on the 
data distribution in the solution space and on possible trends hidden 
in the records. It is possible to believe the higher the homogeneity 
in the database, the more reliable the quality of the correlation. In 
this context, homogeneity also means similarity (regarding external 
conditions influencing the structural performance) with the real road 
network on which the method is applied. To prove this assumption and 
check the effectiveness of different “homogenization” approaches, other 
specific networks, trained using only some of the available records, were 
compared to the reference net, R. These configurations were chosen in 
compliance with the following seven criterions:

1.	 R – the general database including all the 1021 records;
2.	 Tm between 15 °C and 25 °C; only 381 records of the R dataset;
3.	 Tm between 15 °C and 20 °C (246 records);
4.	 kE over 100 (386 records);
5.	 kE over 180 (153 records);
6.	 H between 15 cm and 25 cm (365 records);
7.	 H between 18 cm and 23 cm (202 records);
Excluding the reference selection R, it is possible to classify and 

compare to the other selections according to the factor adopted for 
homogenization (Tm, kE, H) and for the number of records (around 

Figure 6. Mean Square Error for R, F1, F2, F3
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380  for selections 2, 4, 6 and around the half for selections 1, 3, 5). 
Details on the mean value and standard deviation for the different 
parameters for each selection are represented in Tables 1 and 2, 
respectively.

The results, provided in Figure 7 regarding MSE, represent the best 
performances of the different selections: similar patterns represent 
similar homogeneity criteria; moreover, for each network, the number of 
records is reported in the graph.

The MSE values show that selecting similar records in the datasets 
is generally productive and efficient for increasing the final accuracy: 
all the six selections show lower MSE values than R, despite the lower 
record number. If similar scenarios and sections are considered, the 
differences in the unknown behaviours are probably reduced and, thus, 
it becomes easier for the ANN to determine the numerical relationships 
between input and output variables. However, homogeneity effects 
vary as a function of the homogenization factor: according to the MSE 
values, the temperature seemed the most efficient homogenization factor 
(among the analysed ones). It is interesting to notice that, although the 
total thickness is stronger correlated to SNeff (Figure 4) than Tm – and it 

Table 1. Mean value of the parameters included in each network

Network H Ha Tr kE Tm D32 D0 IRI0 IRI Tt MR Pr
R 21.53 5.65 402.89 144.45 12.18 40.99 110.30 1.24 1.46 21.40 32449.18 876.85

Tm 15−25 17.99 4.37 448.69 150.22 18.53 80.36 41.78 1.19 1.42 26.07 34425.97 984.82

Tm 15−20 14.33 4.29 420.61 140.28 16.82 67.26 58.11 1.17 1.41 24.71 32506.70 1045.80

kE >100 23.79 6.48 732.26 301.52 11.92 39.31 112.30 1.33 1.55 20.97 33469.86 941.41

kE >180 19.63 5.95 1150.95 537.54 13.75 44.60 96.26 1.45 1.65 24.93 38973.49 1016.95

H 15−25 19.69 6.41 446.58 195.06 11.35 31.74 113.64 1.30 1.56 20.54 37793.26 944.82

H 18−23 20.15 5.81 400.61 138.00 11.03 32.14 112.71 1.33 1.61 19.31 35732.21 909.70

Table 2. The standard deviation of the parameters included in each network

Network H Ha Tr kE Tm D32 D0 IRI0 IRI Tt MR Pr
R 9.48 3.15 567.80 287.08 5.95 39.44 63.94 0.45 0.57 13.14 20183.53 404.30

Tm 15−25 7.59 2.82 744.59 343.00 2.64 31.53 29.13 0.43 0.53 11.58 25552.03 377.44

Tm 15−20 6.12 2.91 728.13 310.44 1.39 23.49 22.96 0.46 0.55 11.72 16165.03 415.13

kE >100 10.30 3.53 813.95 421.57 6.64 41.09 68.73 0.47 0.57 13.20 23448.27 359.03

kE >180 10.37 4.30 1159.21 597.30 5.31 31.91 54.69 0.56 0.66 12.31 32850.73 373.25

H 15−25 3.07 3.66 571.53 355.53 6.20 36.73 65.29 0.44 0.60 13.24 20980.08 428.34

H 18−23 1.79 3.28 584.94 263.54 6.32 39.61 66.98 0.49 0.63 12.60 17423.63 380.34
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is expected to have a higher influence in similarity selection-, reaction 
to total thickness is around 3 times worse than Tm. Then, the choice is 
difficult.

Further, beyond the homogeneity criterion, by comparing bars with 
the same pattern in Figure 7, it seems the higher the homogeneity level, 
the higher the final accuracy. Indeed, selections 3, 5, and 7 performed 
better than 2, 4, and 6, respectively. Although they were trained with a 
significantly smaller number of records (reduction varies from 35% to 
60%). Naturally, attention should be paid on the record number, avoiding 
much-reduced databases likely causing improper overfitting and 
becoming useless.

However, even if these outcomes are remarkable, it is interesting to 
consider in the next studies a different and probably more performing 
homogenization approach, based on clustering techniques. Indeed, 
this solution generally represents a very efficient way for grouping 
different records according to their similarity in a multi-dimensional 
space (Amadore, Bosurgi, Pellegrino, & Sollazzo, 2016; Bosurgi, Carbone, 
Pellegrino, & Sollazzo, 2017) and, thus, it is probably beneficial in such a 
context.

3.3.	 Committees of Artificial Neural Network

As introduced in Section 2, considering the combination of 
several ANNs is expected to significantly increase the accuracy of the 
correlation. According to the ANN nature and calculation, it is evident 

Figure 7. Mean Square Error for different homogeneous groups
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that the result is strongly influenced by how the records are assigned 
to the three different pools. This distribution was performed randomly 
and, thus, different attempts produced different networks, characterised 
by different performances. In the previous experiments, for each 
architecture, the authors listed only the results of “the best ANN”, 
selected among several “randomly-identical” nets.

Then, it is interesting to focus on this aspect and verify whether the 
combination of multiple ANNs increases result accuracy. At this regard, 
the authors combined different “randomly-identical” nets by averaging 
their results. This operation is supposed to increase the correlation 
quality by averaging the specific inaccuracies of the different nets and 
reduce the final errors in the results.

For reducing the computational issues of these tests, a reduced 
dataset made up of 634 records has been adopted, and the reference 
architecture has been the F3 net described in Section 4.1, as it 
showed the best performance. Three hundred identical – regarding 
architecture − nets were trained in parallel, by randomly assigning the 
available records in the training, validation, and test pools. These nets 
were then combined in committees of different sizes, for evaluating 
the influence of the number of “averaged” nets. In detail, four specific 
committees were defined, by selecting 1/6, 1/3, 2/3 and all of the 
300-trained nets (i.e., 50  nets, 100 nets, 200 nets, and 300 nets, 

Figure 8. Mean Square Error for the average of all the net results 
and the best net for different committee size
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respectively). For each group, the best net (TOP ANN, i.e., the network 
with the best performance in the first 50 nets, 100 nets, 200 nets, and 
300 nets, respectively) and the average of all the net results (AVE ANN, 
i.e., the average of the first 50 nets, 100 nets, 200 nets, and 300 nets, 
respectively) have been considered. The related results, expressed in 
terms of MSE, are presented in Figure 8.

The outcomes are interesting: as expected, averaging the net results 
is always very effective. The average provides better results than the 
single best ANN for all the groups. This result proves the risks related 
to relying on a single net, even if very “promising”. Moreover, despite 
the relevant differences in committee sizes, the average results are very 
similar for the four groups. Then, an average of 50 nets is enough for 
increasing the correlation accuracy, avoiding the higher computational 
issues caused by bigger committee sizes. For more clarity, in Figure 
9, the groups of 50 nets and 300 nets are also compared to Linear 
Regression (LR), regarding the percentage of errors below some 
threshold values (0.1, 0.2, 0.3, 0.5, and 1.0).

The chart further proves the higher accuracy of ANN compared to 
LR for all thresholds. The ANN approaches assure 95% of errors less 
than 0.5, while LR provides around 65% of errors at the same threshold. 
Furthermore, considering LR, over 10% of errors are more than 1. 
Finally, the average provides better results than the TOP nets in both 
cases, and this graph further confirms the quality invariance to the 
committee size.

Figure 9. Committees of 50 nets and 300 nets compared to Linear 
Regression using error threshold values
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3.4.	 Hidden neuron number

Finally, the number of hidden neurons is another parameter to 
consider for optimising the ANN architecture. In literature, there 
are suggestions for adopting a number of hidden neurons around 
1 or 2 times the input number, and advice to limit them to twice the 
inputs (Swingler, 1996) for avoiding overfitting. The previous tests 
were performed considering 25 hidden neurons, according to quick 
preliminary “trial-and-error” experiments. However, since further 
investigating its influence in the correlation accuracy seems to be 
helpful, the authors tested systematically the F3 net presented in 
Section 4.1, considering different possible configurations for the 
hidden layer (varying from 3 neurons to 35 neurons). In detail, 50 nets 
have been trained for each number of hidden neurons. Figure 10 shows 
the MSE of the best net obtained for each hidden neuron number. 
The numerical results evidence it is preferable to adopt more than 
10 hidden neurons in similar applications. Beyond this threshold, 
the net performance is only slightly conditioned by this variable, as 
differences in MSE are very small (around 0.04). Consequently, the 
adoption of 25 hidden neurons in the previous experiments appears as 
an acceptable preliminary choice.

Figure 10. Influence of hidden neuron number on F3 net performance
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Conclusions

In this paper, the authors have examined and analysed an Artificial 
Neural Network for structural performance estimation in asphalt 
pavements, aiming to optimise its configuration and some influencing 
factors for maximising the resulting quality and the estimation 
reliability. In detail, several aspects conditioning the Artificial Neural 
Network accuracy have been considered, to derive some indications 
for proper network optimisation. The considered nets are based on a 
large data set from the Long Term Pavement Performance database, 
including some of the parameters influencing the pavement structural 
performance, such as structural, climatic, traffic, and performance 
variables. The numerical tests evidenced how the factor selection, the 
record homogeneity and the hidden neuron number modify the Artificial 
Neural Network final accuracy, evidencing possible advantages and 
drawbacks of different configurations. In detail, the outcomes proved the 
following issues:

•• the input variables are strategic for the final accuracy; in detail, 
it appeared that an arbitrary increase of the factor numbers has 
a reduced direct influence, but the network is optimised when 
factors actually conditioning the mechanical performance of the 
pavement are selected;

•• if the available dataset is homogeneous regarding variability 
and ranges of the selected factors, the performance significantly 
grows; however, some factors showed higher influence than 
others on the accuracy regarding homogeneity and, thus, the 
dataset selection for network training requires a proper design;

•• the number of hidden neurons represents a strategic factor too: 
indeed, experiments showed above 10 neurons must be adopted in 
similar applications (better around 1−2 times the input number), 
but further tests are required exhaustively relate to this number 
to the dataset features.

Moreover, the numerical results proved that averaging the results 
of parallel Artificial Neural Networks assures better results since 
this solution assures a more accurate coverage of the solution space.
Results and discussions appear useful for optimising the Artificial 
Neural Network architecture for structural performance evaluation in 
practical applications. It is suggested to spend further research efforts 
for including in the dataset rutting measures and distress ratings, 
collected through the innovative, high-performance survey devices, for 
further exploiting the methodology potential. Furthermore, clustering 
techniques are expected to improve the dataset definition, as they are 
helpful in simplifying the identification of similar records in this kind 
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of database. However, the numerical results confirm the effectiveness 
of such a methodology for actually improving Pavement Management 
Systems and reducing deflection survey frequency, producing 
remarkable savings for the road agencies.
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