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Abstract. The design of rigid pavements is historically based on the classical 
Theory of proposed by Westergaard in 1929, which considers the rigid pavement 
as a thin plate resting on an elastic ground with a Winkler reaction, imposing 
the congruence of vertical displacements at the points of contact between 
the pavement structure and the ground. Westergaard’s Theory provides 
expressions for the calculation of maximum stress in concrete slabs for interior, 
edge and corner load conditions. This work focuses on the development of a 
Finite Element model, implemented in the ANSYS® environment and calibrated 
on the basis of the results of the in-scale experimental model developed by Lall 
and Lees in 1983. The implementation of the FE model was performed through 
a set of steps capable of reproducing physical and mechanical conditions of 
the true model, which was further intended to be used for numerical analysis. 
After the FE model was developed, it was possible to carry out multiple 
simulations pursuing three main aims: to evaluate the effect of the variation of 
material properties on the slab stress state, to compare the maximum stresses 
for the interior and edge load conditions considering Westergaard’s Theory, 
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the experimental data and the results of the numerical model, and to use the 
developed and calibrated model to formulate an alternative mathematical 
expression, which would allow calculating the stress in corner load conditions.

Keywords: Westergaard solutions, rigid pavements, concrete slab, FE analysis, 
corner load conditions, stress calculation.

Introduction 

The rigid pavement design is implemented according to calculation 
settings, which are based on the scheme of a slab resting on the ground 
and subjected to the action of loads, acting on a limited portion of the 
slab.

The literature provides solutions for calculating the necessary 
thickness of the slab by calculating the internal stresses induced by load. 
In general, in rigid pavements, three methods can be used to determine 
stresses and strains: mathematical expressions in the closed form 
(rigorous mathematical formula without empirical approximations); 
influence diagrams and FE numerical applications (Yoder, & Witczak, 
1975; Huang, 2004; Applied Research Associates, 2004; Agostinacchio, 
Ciampa, & Olita, 2016a).

Adequate design of slab thickness is of fundamental importance 
in minimizing the influence of distresses (e.g. cracking) and ensuring 
pavement durability (Agostinacchio, Ciampa, Olita, & Simonetti, 2016b; 
Pradena, & Houben, 2018; Yang et al., 2020).

The classical theory par excellence is that of Westergaard 
(Westergaard, 1926a&b). It proposes a mathematical formulation which 
originates from the Lagrange equation for thin plates in conditions of 
axial symmetry. This theory considers the rigid pavement structure 
as a thin plate, resting on an elastic ground with a Winkler reaction 
and imposing the congruence of vertical displacements at the points of 
contact between the pavement structure and the ground. In its original 
version, it can only be applied in the presence of a single wheel load 
of circular, semicircular, elliptic or semi elliptic shape. The influence 
diagrams developed by Pickett and Ray (1951) can be applied to multiple 
wheel load conditions of any configuration. Both methods are applicable 
only to large slabs on a “liquid” foundation. In fact, the supporting 
ground of the slab is considered a dense liquid or a set of independent 
“springs”, therefore, it is not able to resist shearing stress and lacks any 
mechanical continuity.

If the load is applied to several slabs on a liquid, solid or generic 
foundation layer with load being transferred through the joints, it is 
necessary to use the FE method.
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The Westergaard solution (Westergaard, 1926a&b) considers three 
different positions for the load, corresponding to the equivalent load on 
a single wheel in the case of multiple wheels (Figure 1); in the center or 
interior, at the edge and at the corner, giving the following relationships:

	 	 (1)

	 	 (2)

	 	 (3)

where:
	• σ = maximum tensile stress in the slab for bending stress;
	• Q = acting load (considered as equivalent load on a single wheel, 

Q = p∙π∙a2);

	•  = relative stiffness radius, where:

	• E = modulus of elasticity of concrete;
	• h = thickness of the concrete slab;
	• ν = Poisson’s ratio of concrete;
	• K = modulus of subgrade reaction;
	• a = radius of the circular area over which the load is assumed to 

be uniformly distributed;
	• b = equivalent radius:
	• b = b a h h= + −1 6 0 675

2 24
. . , per a < 1.724h;

	• b = a, per a > 1.724h.
The equivalent radius b was introduced by Westergaard in place of 

the effective a so as to consider the thicknesses too large compared to 
the radius of a circular load area, it is in contrast to the hypothesis of a 
thin plate.

In case of the corner load, Eq. (3) that quantifies stress, unlike 
the other two, is a formula of semiempirical origin provided in a non-
closed form adopted by Westergaard to overcome some mathematical 
difficulties.

Since this formula has not found comprehensive experimental 
confirmation, other authors (Pickett, 1951; Teller, & Sutherland, 1943; 
Jeuffroy, 1955) have alternatively proposed different expressions that 
are always of semiempirical origin, of which the most commonly used 
are the following:
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 Pickett (Portland Cement Association)  (4)

	  Teller-Sutherland	 (5)

	  Jeuffroy	 (6)

All previous formulas can be considered in the general form:

	 	 (7)

where coefficient C depends on the position of the load, in addition to the 
relative stiffness radius l and the size of circular area (radius a).

It should be remembered that Westergaard (Westergaard, 
1926a&b) completed his work taking into consideration also the case 
of an elliptical shape area. However, the distinction between elliptical 
and circular areas does not entail any substantial variation in the 
determination of the stress state.

Of the three fundamental loading cases investigated by Westergaard, 
corner loading is undoubtedly the most obscure and debatable. More 
recently, Ioannides, Thompson, and Baremberg (1985) reconsidered 
Westergaard’s solutions and compared them with finite element analysis 

Figure 1. Slab load conditions considered by Westergaard (Westergaard, 
1926a&b)
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using ILLI-SLAB finite element software. The finite element results 
obtained regarding corner deflection are typically about 10% higher than 
those predicted by Westergaard. These results were later also confirmed 
by other researchers. For example, Zdiri et al. (2009) have demonstrated 
that for the corner loading case, the FE results were lower in stresses and 
higher in displacements. Al-Ghafri, & Javid (2018) have proposed another 
comparison between manual and computer calculation using KENPAVE 
software. Maske, Anandkumar, & Majumder (2013) have performed a 
sensitivity analysis by varying subgrade soil properties, which confirms 
that calculation of the corner load may pose difficulties. 

The contribution that the authors intend to make is to propose a 
new mathematical formula for stress calculation by corner load able 
to overcome the discrepancies between analytical calculations and 
experimental evidence.

1.	 The FE model

The implemented FE model refers to the in-scale experimentation 
conducted by Lall and Lees (Lall, 1969; Lall, & Lees, 1983), it has been 
calibrated on the basis of these experimental results. The adopted 
calibration methodology has been developed in three phases: 
schematization of the slab and verification of the static and dynamic 
behavior of the implemented model; identification of adequate boundary 
conditions, suitable for containment of possible negatives boundary 
effects (dimensioning of a significant volume of the support ground, etc.); 
comparison of the results obtained through numerical analysis and the 
experimental measurements recorded. The obtained results show the 
ability of the developed model to reproduce with good approximation the 
general response of the system. 

The dimensions of the rectangular slab are L1=1.34 m (52.8 in) and 
L2=2.77 m (109.2 in) with thicknesses h equal to 2.54 cm (1.0 in) and 
3.38 cm (1.33 in). According to Westergaard’s Theory (slab length larger 
than or equal to 8 times the relative stiffness radius), such dimensions 
allow considering the slab of infinite length, when it is loaded in 
the center, and of semi-infinite length in the case of load at the edge 
(Figure 2).

The geometry of the FE model, implemented in ANSYS® environment, 
is defined by the concrete slab described above, embedded in a 
parallelepiped that constitutes the support ground of such dimensions 
rendering practically irrelevant edge effects on the slab response. The 
parallelepiped measures are 2.5 × 5.0 × 9.0 m (Figure 3).



64

THE BALTIC JOURNAL 
OF ROAD 

AND BRIDGE 
ENGINEERING

2020/15(5)

The parallelepiped constraint conditions include the fixed support of 
the base, while lateral surface movements are blocked in the orthogonal 
directions. 

The surfaces in contact between the slab and the ground are 
bound by a constraint of the bonded type that imposes congruence of 
displacements.

SOLID187 is the finite element used in 3-D modelling. This 
element is a higher order 3-D, 10-node element, it demonstrates a 
quadratic displacement behaviour and is well suited for modelling 
irregular meshes. The element is defined by 10 nodes having three 
degrees of freedom at each node: translations in the nodal x, y and z 
directions. The element has plasticity, hyperelasticity, creep, stress 

Figure 2. FE model of the slab loaded in the center

Figure 3. Complete FE model with slab loaded in the center
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stiffening, large deflection, and large strain capabilities. CONTA174 
and TARGE170 elements were also used in the modelling of plate-to-
ground contact. The mesh of the model was made using the advanced 
features provided by ANSYS® software. In particular, the automatic 
adaptive meshing was used, this is a highly robust meshing technique 
that produces an efficient mesh for guaranteed accuracy as quickly as 
possible (ANSYS®, 2020).

2.	 Influence of material properties on stress analysis

In the first stage of this study, it was considered appropriate 
to evaluate the effect of the variability of intrinsic parameters of 
materials forming the model on the stress state generated by loads. The 
comparison between Westergaard’s and FE solution was carried out for 
this purpose referring to the only model with load in the center equal 
to 2.1 kN distributed on a circular shape of radius equal to 3.35 cm and 
with slab height equal to 2.54 cm. The maximum stress response was 
assessed by varying one parameter at a time, maintaining all other 
parameters constant and equal to the average values set as a reference.

The average parameters of the materials have been set as follows: 
E = 46540 MPa, ν = 0.15 for concrete and K = 220 MPa/m, ν = 0.45 for the 
subgrade.

Variations of the concrete modulus are attributable to the non-
homogeneity of the aggregates and variations of the water-cement 
ratio. As already noted, the average value of modulus E, assumed by 
Lall and Lees (Lall, 1969; Lall, & Lees, 1983), is equal to E = 46 540 MPa. 

Figure 4. Variation of the concrete modulus
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Therefore, assuming a variability of about ±8%, the range between 
43 090 MPa and 49 985 MPa has been set as a variation range. The effect 
of variability of E on the maximum tensile stress value for bending is 
shown in Figure 4. The stress deviation between the two extremes of E is 
1.8% in the case of considering Westergaard’s solution and 2.8% – in the 
FE model.

The variability of Poisson’s ratio of concrete compared to the mean 
value of 0.15 assumed by Lall and Lees was assessed in the range 
0.10–0.25. Figure 5 presents the results obtained and shows a linear 
link between Poisson’s ratio and the corresponding maximum stress 
for both Westergaard’s and ANSYS® solutions. The percentage variation 

Figure 5. Variation of concrete Poisson’s ratio ν
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Figure 6. Variation of subgrade reaction modulus K
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between the stress corresponding to the value of ν =  0.15 and ν = 0.25 
is approximately 8.5% in the case of Westergaard’s solution and about 
8.6% – in the FE model.

The modulus of subgrade reaction K is the most variable parameter. 
As known, in real cases it is possible to record deviations of 35% 
compared to the expected values. Compared to the average value of 
220 MPa/m set by Lall and Lees, the range of variability considered 
was 145–310 MPa/m. For the FE stress analysis, it was necessary 
to give the slab support plane a resilient modulus (MR) value 
(Agostinacchio et al., 2016a), corresponding to the assigned K. The 
AASHTO design Guide (1993) links K and MR through the relation K 
(MPa/m) = 2.028MR (MPa). However, recent experimental evidence 
(Ping, & Sheng, 2011) has proposed the following correlation: K 
(MPa/m) = 2.25MR (MPa), which was adopted in this study. Therefore, 
the average MR value is equal to 97.80 MPa and the variability range is 
between 64.50 and 137.80 MPa.

Figure 6 shows the trend of the maximum tensile stresses for bending 
when the subgrade reaction modulus is varying in order to change the 
corresponding resilient modulus. Stress variation is recorded between 
the average bearing capacity value and the extreme of the variability 
interval, equal to 4.30% for Westergaard’s solution and 6.40% – for the 
finite element solution.

The subgrade Poisson’s ratio is not required by the Westergaard 
formulation, whereas for the FE model it is necessary to assign a value 
to it. As known, the values of Poisson’s parameter for the subgrade vary 
from 0.25 to 0.45 with typical value of 0.4. The numerical analyses were 
carried out to evaluate the stress variation when parameter ν changes, 

Figure 7. Variation of the subgrade Poisson’s ratio
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the obtained results are summarized in Figure 7. The stress variation 
is very modest, in fact, considering the extreme values of the variability 
range (0.25–0.45), there is a variation of less than 1%. Taking this 
consideration into account, ν = 0.45 was set in the subsequent analyses.

The maximum variability of maximum tensile stress, compared to the 
reference values set by both Westergaard’s solution and ANSYS®, is about 
9%, as shown in Table 1.

3.	 Influence of load area radius

Lall and Lees (Lall, 1969; Lall, & Lees, 1983) experimentally assessed 
the maximum tensile stress in the concrete, as the radius of the load 
area in the in-scale model described in Section 2 was varied. The 
experimental results are available for two slabs thicknesses (2.54 and 

Table 1. Maximum variability of maximum tensile stress

Subgrade Concrete Westergaard ANSYS®

K, MPa/m MR, MPa E, MPa ν σmax, MPa σmax, MPa

Lower limit 145 64.50 43090 0.10 3.769 3.376

Reference value 220 97.80 46540 0.15 3.613 3.127

Upper limit 310 137.80 49985 0.25 3.948 3.422

Maximum tensile stress variability, % ±9.3 ±9.4

Figure 8. Variation of load area radius (h = 2.54 cm and load at the center)
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Figure 9. Variation of load area radius (h = 3.38 cm and load at the center)
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Figure 10. Variation of load area radius (h = 2.54 cm and load at the edge)
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Figure 11. Variation of load area radius (h = 3.38 cm and load at the edge)
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3.38 cm), four radii (3.35, 4.45, 5.56 and 6.68 cm) and two load positions 
(in the center and at the edge) with a load of 2.1 kN.

In this study, the experimental results were compared with those 
obtained by the application of Westergaard’s solution and the Finite 
Element model implemented in ANSYS®. Figures 8, 9, 10 and 11 sum up 
the results obtained and highlight how the experimental observations 
are best interpreted by the FE model. In particular, a full convergence 
is achieved between the maximum stress values calculated using the 
ANSYS® model and the experimental ones for upper slab thicknesses 
(h = 3.38 cm) and for the load at the edge (Figures 10 and 11).

It is interesting to note that for the load configuration at the edge, 
unlike load configuration at the center, the maximum stresses provided 
by the FE model are higher than those calculated by Westergaard and 
convergent with those experimentally observed.

4.	 Load-stress relations

The next phase of this work was focused on verifying the reliability of 
the FE model response compared to the experimentally measured values 
in terms of maximum tensile stress for bending, determined by varying 
the position (in the center and at the edge), the radius of the load area 
(3.35, 4.45, 5.56 & 6.68 cm) and the intensity of load Q (0.45, 0.90, 1.36, 
1.81 & 2.26 kN) for two slab thicknesses (2.54 cm & 3.38 cm). The results 
obtained are summarized in Figures 12 and 13.

The stresses obtained by the ANSYS® model are completely 
convergent with the experimental observations and, in general, are 
slightly inferior both in the case of load in the center and load at the 
edge. However, Westergaard’s solution provides stress levels that tend 
to move away from experimental observations, as the radius of load 
area increases in the case of load at the center (Figure 12), and are 
noticeably divergent from the latter in the case of loading at the edge 
(Figure 13).

In general, the results can be used to detect the fact that when 
loads are applied to the center of the slab, the maximum stresses 
detected both by Westergaard and the FE model are representative of 
the experimentally measured values. Referring to the load condition 
at the edge, Westergaard’s solution loses effectiveness, while the 
ANSYS® model continues to be congruent with the experimental 
measurements.
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Figure 12. Load-stress relations with load in the center
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Figure 13. Load-stress relations with load at the edge.

a) h = 2.54 cm – a = 3.35 cm

c) h = 2.54 cm – a = 5.56 cm

b) h = 2.54 cm – a = 4.45 cm

d) h = 2.54 cm – a = 6.68 cm

e) h = 3.38 cm – a = 3.35 cm f) h = 3.38 cm – a = 4.45 cm

g) h = 3.38 cm – a = 5.56 cm h) h = 3.38 cm – a = 6.68 cm
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5.	 New formulation for corner load conditions

The Lall and Lees (Lall, 1969; Lall, & Lees, 1983) experimental 
data refer only to the conditions of load in the center and at the edge. 
As known, for the corner load condition, it is relatively complex to 
derive reliable data from experimental tests, because the major tensile 
stresses are in the upper part of the slab and at the edge of the circular 
load area. This is because with the application of the load a “cantilever” 
type mechanism is developed for both sides of the slab, which naturally 
generates greater stresses in the upper part of the cantilever and near 
the constraint.

The difficulty in performing reliable experimental tests and the 
uncertainty in the evaluation of the maximum slab stresses for the 
corner load have led numerous authors to the development of alternative 
semi-empirical expressions, as already highlighted in Section 1.

Moreover, in this load condition, Westergaard’s solution does not 
derive from the strict resolution of the differential equation, but it is a 
simplified semi-empirical formula adopted by Westergaard to overcome 
the analytical difficulties that this solution involved.

The most well-known formulations available thanks to Westergaard, 
Pickett, Teller-Sutherland and Jeuffroy, respectively, which, as 
highlighted in Section 1, can all be traced back to Eq. (7), where 
coefficient C depends on the load area radius a and the relative stiffness 
radius l. The dimensionless coefficient C is independent of the ratio Q/h2 
and can be written as follows:

	 C a
l

= −






















3 1
2

0 6.

 Westergaard	 (8)

    Pickett (Portland Cement Association)   (9)

  	  Teller-Sutherland	 (10)

	  Jeuffroy	 (11)
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The above study showed how the ANSYS® model provides results 
in full agreement with the experimental data for the case of load in the 
center and at the edge, confirming the reliability of the implemented 
model.  Therefore, the authors employed this FE model to study the 
case of load at the corner and then compared the results obtained with 
various formulas found in literature.

In order to make such comparison, it is necessary to vary multiple 
parameters at play for the calculation of the maximum stress and then 
make the comparison directly with parameter C, which can be derived 
from various formulas. Therefore, countless FE elaborations were 
necessary to determine coefficient C. 

The values involved in the variation of parameter C are a and l, and 
in, particular, the ratio a/l. In order to have a variation of this ratio, it is 
necessary to diversify the values of the load radius a and of the stiffness 
radius l which, in turn, depends on the properties of concrete (E and ν), soil 
properties (K or MR) and the thickness of the slab. The basic properties of 
the starting model are those used for comparative calculations shown in 
the previous sections. Considering these initial values, many FE analyses 
were carried out with the load at the corner, from time to time achieving 
the maximum tensile stress for bending in the concrete.

Four different radius values of the load area (3.35, 4.45, 5.56 and 
6.68  cm) have been considered, varying E, ν, K and h for each load 
condition, so that at the variation of each individual parameter, the 
others assume the initial mean values, and then the value taken by 
parameter C is determined. The variability of parameters E, ν, K is the 
same as the cases examined above, as well as the slab heights considered.

Figure 14. Interpolating curve of C values
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Table 2. C values obtained varying the ratio a/l

a/l
Coefficient C

Westergaard Pickett Teller-Sutherland Jeuffroy ANSYS®

0.199 1.599 2.268 2.346 1.944 2.194

0.216 1.529 2.194 2.278 1.881 2.120

0.241 1.426 2.090 2.174 1.792 2.033

0.255 1.375 2.040 2.120 1.749 1.972

0.256 1.371 2.036 2.115 1.745 1.969

0.256 1.367 2.033 2.112 1.742 1.966

0.264 1.339 2.005 2.080 1.719 1.933

0.276 1.296 1.963 2.032 1.683 1.889

0.283 1.269 1.938 2.002 1.661 1.864

0.287 1.255 1.924 1.985 1.650 1.851

0.321 1.133 1.811 1.838 1.552 1.736

0.330 1.102 1.783 1.800 1.528 1.699

0.338 1.073 1.756 1.762 1.505 1.678

0.340 1.067 1.751 1.755 1.501 1.674

0.341 1.064 1.748 1.750 1.498 1.672

0.358 1.007 1.697 1.675 1.455 1.581

0.366 0.979 1.672 1.638 1.434 1.561

0.375 0.949 1.647 1.598 1.412 1.501

0.376 0.948 1.645 1.596 1.410 1.516

0.396 0.882 1.589 1.505 1.362 1.419

0.400 0.867 1.577 1.484 1.351 1.419

0.422 0.798 1.519 1.384 1.302 1.330

0.424 0.792 1.514 1.375 1.298 1.327

0.426 0.788 1.510 1.369 1.295 1.322

0.430 0.775 1.500 1.350 1.285 1.306

0.457 0.690 1.431 1.222 1.226 1.243

0.469 0.655 1.403 1.167 1.202 1.228

0.481 0.620 1.374 1.111 1.178 1.210

0.498 0.568 1.334 1.029 1.144 1.183

0.507 0.542 1.315 0.987 1.127 1.153

0.509 0.536 1.309 0.976 1.122 1.149

0.511 0.531 1.306 0.968 1.119 1.145

0.549 0.422 1.224 0.785 1.049 1.084

0.563 0.383 1.195 0.717 1.024 1.050

0.622 0.222 1.080 0.427 0.926 0.945

0.747 −0.101 0.867 −0.205 0.743 0.760
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By elaborating the results of all conducted FE analyses, it was 
possible to define 36 values of the a/l ratio and calculate as many values 
for parameter C. Then, for the same parameter combinations, the values 
of C were calculated by applying equations (8), (9), (10) and (11) found in 
literature, obtaining the results shown in Table 2.

With C values determined on the basis of the FE analysis, an 
interpolating relation of numerical values was sought for. Figure 14 
shows the second-degree polynomial regression curve that interpolates 
these values.

The determinate relation is then:

  	 C a
l

a
l

= 





 − 






 +3 6 6 0 3 3

2

. . . 	 (12)

that allows the authors to propose a new formulation for the 
determination of the maximum tensile stress due to the load 
configuration at the corner:

  	 	 (13)

Figure 15 shows the pattern of parameter C (which coincides with 
the trend of stresses minus the ratio Q/h2) of the new solution proposed 
in addition to those found in literature. It is noted that the proposed 
formula is positioned between Pickett and Jeuffroy curves with a 
gradient of variability, which is very similar to the Westergaard curve 
that decreases more rapidly as the ratio a/l increases.

Figure 15. C values within different theories as a function of a/l ratio
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Conclusions 

The paper focused on the identification of a new mathematical 
formula for the rigid pavement stress calculation under corner loading 
conditions able to overcome the limitations of the one initially provided 
by Westergaard and later by several other authors (Pickett, Teller-
Sutherland, Jeuffroy, etc.).

The result was achieved by implementing a Finite Element model 
built in the ANSYS® environment capable of evaluating the maximum 
tensile stress for bending in concrete slabs for all load conditions. The 
FE model was calibrated with the experimental in-scale model data 
developed by Lall and Lees and gave results fully convergent with the 
experimental evidence.

The reliability of the Finite Element solution has been evaluated in 
function of the variation of the concrete properties, as a function of the 
subgrade bearing capacity and the load position change, the radius of the 
circular area over which the load acts, etc. All analyses conducted have 
confirmed reliability of the ANSYS® model and its ability to represent the 
investigated physical reality.

By using the FE model, it has been possible to identify a mathematical 
formula alternative to those currently present in the literature, which 
is fully convergent with the experimental evidence and therefore able 
to provide an evaluation of the maximum tensile stress per load at the 
corner most adherent to reality. The result obtained may be of great use 
in design of rigid pavements also considering the fact that for the corner 
load condition, it is relatively difficult to obtain reliable experimental 
data because the maximum tensile stress develops in the upper part 
of the slab and at the sides of the circular load contact area due to the 
establishment of a “cantilever” type mechanism.
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