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Abstract. The rotation superstructure construction method is a widespread 
technique in bridge engineering. The critical issue for the successful application 
of this technique is the contact interface analysis and design for the rotating 
mechanism. A semi-analytical method predicated upon obtaining a uniform 
distribution of pressure on the slide plates within the interface is proposed. The 
surface design typically generates a nonlinear stress distribution. It leads to 
local damage and local asperity interlocking, which increase the contact friction 
dramatically during the rotation. In contrast, the proposed approach provides a 
surface that avoids stress concentrations and is expected to reduce the material 
cost of the slide plates. The proposed method is verified by the Finite Element 
Model. It can be used in a broad area involving contacting surface design, 
especially in the rotating mechanism design for bridge construction.
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Introduction

The rotation superstructure construction method is attractive for 
installing bridges in many cases (Zhang & El-Diraby, 2006). In this 
method, the bridge superstructure is first built in an open area parallel 
to the spanned obstacle (a river, a canyon, a highway, or a railway). The 
superstructure is then rotated into the desired position. The method 
promotes bridge construction in reducing impacts on traffic, safety, 
and overall project budget and duration. The critical challenge for the 
success of this method is the rotating mechanism, which involves the 
contact and friction problem in large contacting bodies under high 
pressures.

The contact mechanics of interfaces formed by joining surfaces is 
a fundamental problem in engineering. The pioneering work related 
to the contact mechanics of deformable bodies has been done by Hertz 
(1881, 1896), who developed the stress-displacement relationship of 
contact between two perfectly smooth convex elastic bodies under 
normal loading. Since the 1950s, numerous researches on the contact 
mechanism have addressed the influences of surface roughness, friction, 
and adhesion. Mindlin (1953) studied the contact behaviour of two 
smooth spheres under combined normal and shear loading. Greenwood 
& Williamson (1966) introduced the statistical approach to describe the 
roughness of the interface, assuming each asperity had the same radius 
but different heights. Nayak (1971, 1973a, 1973b) utilised the random 
process theory (Longuet-Higgins, 1957a, 1957b) in the analysis of 
Gaussian roughness, which was subsequently used by Bush et al. (1975) 
in rough surface contact. These surface roughness analyses have also 
been extended to consider the effect of asperity interlocking on friction 
(Huang & Misra, 2013; Misra & Huang, 2011). At the same time, many 
researchers have contributed to improving the efficiency and accuracy 
of the computational method for the contact problem. The computational 
methods based on classical continuum assumptions are Finite Element 
Method (FEM) (Hyun et al. 2004; Wriggers & Zavarise, 2004) and 
boundary element method (Banerjee & Butterfield, 1981; Brebbia & 
Walker, 2016). Molecular dynamics have been used to simulate the 
surface interactions, aiming to get molecular origins of the contact/
friction mechanism (Berman et al., 2015; Huang, 2017; Luan & Robbins, 
2005; Mo et al., 2009; Pastewka et al., 2012).

The motivation of research on contact behaviour is to control 
friction. However, strategies to control friction in practice remain 
a challenge (Barber & Ciavarella, 2000; Urbakh et al., 2004). In this 
paper, the authors investigate the contact behaviour of the rotating 
mechanism to provide knowledge for efficient and optimal rotating 
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mechanism design. The ideal contact surface gives a uniform stress 
distribution and has minimal friction. In the following sections, 
the authors combine the classic contact theory and computational 
technique with improving the contact surface design in a large 
contact system. The proposed method is verified by the existing 
computational method.

1. Methods and materials

1.1. The background of the contact problem: 
description of the construction method

During the bridge construction process, access to the bridge crossing 
area is often restricted. An example is shown in Figure 1, where a 
highway bridge is required to span an in-service high-speed railway line. 
In these cases, the rotation superstructure construction method is one 
of the best choices for construction. A general procedure for the bridge 
construction based on rotation superstructure construction method 
consists of follows steps:

1. foundation construction,
2. installation of the rotation mechanism,
3. pier construction,
4. supper structure construction (in this case using hanging basket 

construction method), and
5. rotating the structure to the desired position.
Except for Step 2 and Step 5, the other steps are conventional 

construction procedures.
A general rotating mechanism configuration is shown in Figure 2. 

The mechanism consists of a spherical hinge and the traction strand. 
The contact occurs between the upper spherical hinge-component and 

Figure 1. Illustration of the rotation superstructure construction method

rotating mechanism

before rotation after rotation
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the lower spherical hinge-component. The spherical hinge-component 
are steel plates embedded within concrete blocks, as shown in 
Figure 2. Thus, the conforming contacting surfaces are formed by the 
two spherical steel plates. The spherical hinge provides the following 
advantages:

1. a large contact area, and
2. stability against overturning.
However, the friction coefficient of the metal is relatively high; 

thus, a perforated-steel plate with inserted slide plates is introduced 
between the two components. In this case, the perforated plate 
is welded to the lower component; then the upper component 
articulates over the slide plates installed in the perforations, as 
shown in Figure 3. In this sense, the hinge is expected to mimic 
biological joints in which soft low-friction articulating surface or 
insert (as in knee meniscus) intervene at the interface. The slide 
plates are made of Polytetrafluoroethylene (PTFE) (Sawyer et al., 
2003), which is a synthetic f luoropolymer of tetrafluoroethylene. 
Polytetrafluoroethylene has one of the lowest friction coefficients 
(with a range of 0.01 to 0.10) of any solid with a low-cost expense, thus 
reducing the overall friction of the mechanism. Therefore, the efficient 
design for the rotation mechanism is when the pressure in each slide 
plate is the same, and the stress distribution within each slide-plate is 
uniform, so the frictional wear of the slide plates is uniform. It notes 
that the spherical hinge and the slide plates stay in the bridge after the 
rotation.

Figure 2. Configuration of the rotating mechanism

Note: the base is fixed during the simulation.
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Figure 3. Slide plates distribution on the surface

Note: units in mm.

a) the slide plates distribution in the spherical hinge

b) spherical hinge with preformed holes for the slide plates

c) installation of the slide plates
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1.2. Finite Element Contact Model of the rotational 
mechanism

The Finite Element Method has been widely used in broad 
engineering areas due to its accuracy and efficiency. Thus, the FEM 
was used to model the contact behaviour of the rotating mechanism 
and verify the results obtained by the proposed method in the 
next section. For completeness, the mathematical foundation of the 
FEM for the contact problem of elastic bodies is introduced briefly 
(Wang, 2003; Wriggers & Zavarise, 2004). The contact problem is 
highly nonlinear. It often experiences three types of nonlinearities, 
i.e., material nonlinearity, contact nonlinearity, and geometric 
nonlinearity. Contact boundary constraints are unique to contact 
problems. The incremental theory is used in FEM where the loading 
is divided into many increments due to the nonlinearity. In each 
loading increment ∅tt, the contact boundary constraint (Figure 4) is 
expressed as: 

 u u gA
N

B
N N− + = 0, 

 u uA
T

B
T− = 0, (1)

Figure 4. Typical contact problem and boundary conditions
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where u u gA
N

B
N N− + = 0, and u u gA

N
B
N N− + = 0, represent the incremental normal displacement 

vectors of the contact bodies A and B on the contact surface, respectively; 
u uA

T
B
T− = 0, and u uA

T
B
T− = 0, represent the incremental tangential displacement vectors 

of the contact bodies A and B, respectively; gN is the distance vector 
between the contact points. Accordingly, the constrained partial 
differential equation is rewritten as the following weak form according to 
the virtual work principle in Lagrangian description (Wang, 2003):
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where τij is the stress tensor and eij is the strain tensor; i, j, and J are 
tensor/vector index; Ti is the surface stress vector for contact solid 
A and B; FJ

A  is the contact stress vector at the contacting surface 
(Figure 4). The upper/lower left index of the tensor/vector (t + ∆t) is the 
incremental step expressed in time based on the Lagrangian description. 
The first term in the Eq. (2) is the virtual strain energy; the second term 
is the external virtual work produced by the surface force; the third term 
is the contact force generated on the contact surface virtual work.

The Lagrange multiplier method is introduced to consider additional 
constraints expressed in Eq. (1), and the corresponding modified 
functional variation of the displacement increment is as follows:
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where AJ
A is the Lagrange multiplier. The first term of the Eq. (3) is the 

virtual strain energy; the second term is the external virtual work 
produced by the surface force; and the third term is the “virtual work” 
produced by the constrained variable (i.e., Lagrange multiplier variable). 
Eqs. (2) and (3) are equivalent, including the relationship between 
the equivalent node force on the contact interface and the Lagrange 
multiplier variable. If the entire domain is discretised, and the node 
displacement is used as the primary variable of the shape function, the 
final FE solution Eq. (4) is as follows:
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 , (4)

where KL is the linear term of the global stiffness matrix of the 
contact body, and KNL is the corresponding nonlinear term. t t

LQ
+∆  is 

the equivalent node force produced by the surface stress 0
tF  is the 

unbalanced node force in the linearisation process produced by the first 
term of Eqs. (2) and (3). The first equilibrium Eq. (4) of the linear system 
is essentially the discretised form of Eq. (3), and the second equilibrium 
Eq. (4) of the linear system is the discretised form of constraint Eq. (1).

The discretised Eq. (4) is solved by the finite element algorithm 
performed by ABAQUS (Abaqus, 2014). The Finite Element Model for the 
mechanism is shown in Figure 5.

For the case study considered in this paper, the slide plates have 
been arranged into 12 concentric circular arrangements to have a total 
of 634 cylindrical slide plates, each of them with a radius of 30 mm and 
a height of 18 mm. These slide plates are placed in concentric circles 
with uniform spacing along a circumference. This spacing is the same 
for each circle so that the area ascribed to each slide plate is the same. 
The expectation is that such a placement results in a uniform loading of 
each slide plate (which is an incorrect assumption for the case of uniform 

Figure 5. Illustration of the rotating mechanical components in the Finite 
Element Model
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height, as shown later in Section 2). The slide plates are inserted into 
the preformed holes in the lower spherical hinge, as seen in Figures 
3a−3c. This case study is inspired by the Mozhan Bridge, located in 
Maoming city, China. The bridge includes two side bridges with the same 
structural details. Two halves of superstructures weigh 10 500 tons and 
are supported by the rotating mechanism. After the construction of the 
superstructures has been completed, it needs to rotate the mechanism 
90 degrees to the desired position.

In the Finite Element Model, the Hexagonal eight-node element 
(C3D8R) is used to discretise all the parts (Figure 6). During the 
simulation, the base is fixed. By using trial and error procedure, the 
mesh size of the element is determined. The total number of elements in 
the model is 160 596. For each spherical shell, the mesh size is 0.050 m, 
and the number of elements is 8352. For each slide plate, the mesh size 
and the number of elements are 0.006 m and 186, respectively. The 
slide plates are tied to the lower spherical hinge and have a “surface 
to surface” contact with the upper spherical hinge. The material 
parameters used in this paper is found in Table 1.

Figure 6. Finite Element Model of the rotating mechanism

Note: the base is fixed during the simulation.

Table 1. Material parameters of the Finite Element Model

Parts
Parameters of the Finite Element Model

Elasticity modulus, MPa Poisson ratio

Upper rotation structure 3.25·104 0.2

Upper spherical hinge 2.10·105 0.3

Lower spherical hinge 2.10·105 0.3

Sliding plates (PTFE) 1400 0.4

Concrete base 3.25·104 0.2
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1.3. The efficient contact models

The above FEM is complex from the design viewpoint since it needs 
many degrees of freedom and requires the solution of a nonlinear 
contact problem, which is computationally expensive. The hinge design 
is optimised by using the iterative method or trial and error method. 
Using so large FEMs is far beyond the typical design practice where an 
ad hoc approach is often used. From the viewpoint of practice, therefore, 
simplified yet robust approaches are desired.

A way forward is by adopting the classic contact mechanics (Johnson, 
1985). In this simplification, the surface (or interfacial) geometry of the 
contact of two elastic solids is treated as a rigid solid with an elastic solid 
by introducing the composite surface H, which is expressed as:

 H x y H x y H x y, , , ,( ) = ( ) + ( )1 2
 (5)

where H1 and H2 are the surface geometry in a Cartesian coordinate 
system. For the case study considered in this paper, the contact occurs 
between the upper spherical hinge component (steel) and the PTFE 
slide plates embedded in the lower spherical hinge component. Thus, H1 
is the outer surface profile of the upper spherical hinge component, and 
H2 is the inner surface profile of the lower spherical hinge component 
with slide plates (Figure 7a). H is the composite surface profile, 
which is the sum of H1 and H2. It notes that H1 = R’ = 7992 mm and H2 = 
R− Sh = 7992 mm, where Sh = 8 mm is the raised part of the embedded 
slide plate; thus, the surface profile H is a flat surface. The equivalent 

Figure 7. Simplification of the contact model: from multi-bodies contact 
problem to classic elasticity

a) the original contact 
model profile

b) transformed into contact 
between a rigid and an elastic 
block

c) further transformed  
into an elastic problem  
of half-space

R’ = 7992 mm

R = 8000 mm

Rigid body

P
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elasticity modulus E* and Poisson ratio ν is given by Eq. (6) (Ciavarella et 
al., 2019; Johnson, 1985; Persson, 2007):

  (6)

where E1 and E2 are the elastic moduli for the contact body 1 and 2, 
respectively; ν1 and ν2 are the Poison ratios for the contact body 1 and 2, 
respectively.

This simplification is implemented here for the analysis. In Figure 7, 
the contact of slide plates with the upper hinge component is idealised 
as the contact of rigid punch with rounded end indenting a flat elastic 
half-space as stated in Eqs. (5)−(6). In this idealisation, the contact of 
a desired rounded rigid punch with flat elastic half-space results in 
uniform pressure distribution. This idealisation is especially appropriate 
since the elastic modulus of slide plates is two orders of magnitude 
smaller than the upper hinge component made of steel. Thus, the 
significant contribution to the deformation is from the slide plates only. 
Therefore, the contact problem is transformed to of determining the 
displacement profile of elastic half-space subjected to uniform pressure 
on a set of circular areas.

In this case, the normal surface displacement produced by a normal 
concentrated force P is expressed as:

 u
E

P
rz =

−1 2

π
, (7)

where r is the distance from the origin.
Since the contact force produced by the slide plate is within the 

circular area, thus, the total surface displacement due to pressure p(s,φ) 
is obtained as follows:

 u
Ez =
−1 2

π ∬  (8)

where (s,φ) are polar coordinates.
For the uniform circular contact pressure with radius r, P is a 

constant. Eq. (8) yields the following results:

  (9)

where E r
ae







 is the complete elliptic integral of the second kind with the

modulus r
a







, and Ee is expressed as:
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  (10)

At the edge of the circle, the displacement uz has a simple expression:

  (11)

Outside the pressure area, the displacement uz has the following 
expression as:

  (12)

where K a
re







 is the complete elliptic integral of the first kind with the 

modulus 
a
r







, and Ke is expressed as:

  (13)

As shown in Figure 8, the displacement induced by the uniform 
pressure decreases with r, and the indentation below a slide plate is 
affected by its neighbour slide plates.

Since the closed-form solution for the complete elliptical integral 
is absent and the numerical integral results inexpensive computation, 

Note: pressure area a = 1 m, and Poisson ratio ν = 0.35.

Figure 8. Demonstration of the displacement induced 
by the uniform pressure
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the authors have used the approximation (Cody, 1965; Hastings Jr et al., 
1955), where Ke is expressed as:

  (14)

where a0 = ln4, 
i

n
ia=∑ =

0 2
, and b0

1

2
= †

 
and m, n are approximation 

numbers. A larger number leads to a smaller error. Here, m is considered 
equal to n. Ee is expressed as the following form:

  (15)

where c0 = 1, 
i

n
ic=∑ =

0 2
, and d0 = 0 and η is the square of the 

complementary modulus, which is expressed as:

  (16)

Eqs. (7)−(15) give an efficient method to get the deformation 
corresponding to uniform pressure due to a single slide plate. The 
authors then superpose the displacement by all the slide plates to get the 
final displacement field. As a result, the corresponding shape of the slide 
plate is obtained.

1.4. Optimal design procedure

The method, as mentioned above, is immediately applied to the 
engineering design for the rotational mechanism. Here, the optimal 
objective is to obtain the height distribution of the slide plates for 
a given arrangement (Figure 3a). A summary of the optimal design 
procedure for use in practice is given in the flowchart in Figure 9. 
For a given superstructure and pre-specified slide plate diameter 
(typically these are available in standard sizes), the first step is to 
determine the slide plate position to ensure uniform ascribed area, as 
noted in Section 1.2. The method described in the previous section is 
then applied to determine the height distribution of the slide plates. 
Typically, for each slide plate, Eqs. (9), (11) and (12) are evaluated 
numerically. The overall displacement field of the elastic block is then 
determined by the superposition of the slide plate fields. It is clear that 
due to the superposition, the indentations produced below each slide 
plate is affected by its neighbours. The resulting indentation depth is 
the correct height profile for the slide plates, which gives the assumed 
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Figure 9. Flowchart of the optimal design based on the proposed 
contact method

uniform pressure distribution. It is particularly true since the slide 
plates significantly contribute to the overall deformation as they are two 
orders of magnitude softer.

2. Results and discussions

2.1. The input information for the case study of the rotation 
mechanism

In the following result, the case study for Maozhan Bridge is 
discussed. The input parameters for the FEM is found in Table 1. The 
boundary condition for the FEM is shown in Figure 5; where the base is 
fixed. The surface loading stress (11.34 MPa) is uniformly distributed on 
the top surface. The efficient contact model parameters are also based on 
the Maozhan Bridge, where the equivalent elastic modulus E = 1450 MPa 
and Poisson ratio ν = 0.35. Moreover, the compressive yield stress of the 
plates is 100 MPa.

2.2. Slide plates with uniform heights

When the slide plates have a uniform height of 18 mm, the force of 
each slide plate is different, where the average stress of the slide plate 
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(force divided by the area) is shown as in Figure 10. Furthermore, as 
shown in Figure 11, the stress distribution is ununiform within each 
slide plate. It is observed that the maximum stress is about 113 MPa, 
while the average stress is about 57.40 MPa. The stress concentration 
may result in local damage. Even though some researchers believe that 
friction coefficient is independent of the normal stress (Huang & Misra, 
2013; Urbakh et al., 2004), high contact stress under a given overall 
load may lead to local damage, which in return results in asperity 
interlocking effect (Huang & Misra, 2013) or ploughing effect (Johnson, 
1985). Therefore, the desired normal stress distribution follows a 
uniform stress distribution, and the authors use the proposed method to 
get it.

Figure 10. Stress distribution of each slide plate for the original design
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Figure 11. Stress distribution of the rotating mechanism with slide plates
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2.3. Optimal heights of the slide plates using the proposed 
contact method

To avoid stress concentration, the authors used the proposed method 
to get the desired height distribution of the slide plates. As discussed 
before, the indentations of the elastic block are the corresponding 
heights of the slide plates. Displacement, which is the expecting optimal 
profile, can be obtained quickly under the uniform pressure. Based 
on the discussion in Section 1.4, the displacement fields induced by a 
set of uniform pressures are obtained. And then, the corresponding 
displacement matches the indentations of the slide plates. Consequently, 
the heights of the slide plates are determined.

Figure 12. The shape of the slide plate using the half-space theory

Note: units in mm. 

Figure 13. Height distribution for the profile of slide plates

Note: from the centre to the edge.

y
x
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Notably, the deformation caused by uniform pressure induced 
by 634 slide plates can be seen in Figure 12 (assume each slide plate 
yields the same uniform pressure). Then according to this indention 
(deformation), the height of the slide plate can be back-calculated. 
Figure 13 shows the profile (height distribution) of the slide plate, giving 
the uniform contact stress when contacting the surface.

For evaluating the proposed approach, the slide plate in Figure 13 is 
used as the input for the FEM. In Figure 14, the authors found that the 
stress at each slide plate tends to be uniform. Moreover, the stress 
distribution is more uniform (Figure 15), where the maximum stress 

Figure 14. Stress distribution at each slide plate for the original model 
and the optimal model based on finite element analysis
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after the optimal process
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is about 80 MPa, which is two-thirds of the maximum stress using 
traditional design using uniform heights. It indicates that the optimal 
design is advantageous.

Conclusions

This paper has analysed a massive contact problem critical to the 
rotation superstructure construction method in bridge engineering. It is 
shown that an understanding of the contact behaviour is important for 
the surface design in the rotating mechanism. The conclusion is drawn 
as follows:

1. The proposed contact model reduces the geometry complexity, 
which transforms the multi-bodies contact problem into a classic 
elasticity problem. Based on the desired stress distribution, the 
superposition approach is used to obtain the contact surface 
to prevent the iterative method, which involves the expensive 
computational expense.

2. The finite element analysis results show that the contact surface 
generated by the proposed contact model meets the design 
requirement, i.e., a uniform contact pressure distribution is given 
under the slide plates.

3. The revised design based on the proposed method reduces the 
material cost of the slide plates and reduces friction and avoids 
the local damage.

Therefore, the proposed method can be used in a broad area 
involving contacting surface design, especially in the rotating 
mechanism design for bridge construction.
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