
66

THE BALTIC JOURNAL 
OF ROAD 

AND BRIDGE 
ENGINEERING

2 02 1/1 6 ( 2 )

ISSN 1822-427X/eISSN 1822-4288
2021 Volume 16 Issue 2: 66–89
https://doi.org/10.7250/bjrbe.2021-16.524

*	 Corresponding author. E-mail: maciej.hildebrand@pwr.edu.pl

Czesław MACHELSKI (ORCID iD 0000-0002-1215-7908)
Maciej HILDEBRAND (ORCID iD 0000-0001-8011-2464)

Copyright © 2021 The Author(s). Published by RTU Press

This is an Open Access article distributed under the terms of the Creative Commons Attribution 
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source are credited.

CABLE-STAYED BRIDGE LOADS  
CAUSED BY TRAFFIC CONGESTION  
ON THE DECK MEASURED WITH BRIDGE 
MONITORING SYSTEM

CZESŁAW MACHELSKI1, MACIEJ HILDEBRAND2*

1, 2Wrocław University of Science and Technology, 27, 
Wybrzeże Wyspiańskiego Str., 50-370 Wrocław, Poland

Received 9 September 2020; accepted 19 February 2021

Abstract. Structural safety of a bridge depends, among other things, on the 
number of vehicles passing on its deck, their weights and distribution of 
loads to their axes. A large number of vehicles can accumulate on the bridge 
in a controlled state, i.e., during an acceptance test including load testing, and 
during traffic congestion on the bridge, which is a fortuitous event addressed 
in this paper. The paper deals with the analysis of load intensity on one bridge 
carriageway when it is fully and randomly filled during traffic congestion. 
The influence functions of the forces in the cables are used to determine the 
effects of loads exerted by the vehicles moving at very low speed. Effects of 
such loads are studied considering an exemplary cable-stayed bridge. Since the 
measurement basis was limited, the iterative algorithm was used. It consists 
in shortening the girder sections under analysis to the area appropriate for 
determining the load in each successive step of iteration. Ineffectiveness of the 
traditional algorithm, where the determined system of equations is resolved, 
is an important premise for using such algorithm. The results of numerical 
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analysis show that the load intensity caused by traffic congestion is relatively 
high. It has been demonstrated that the matrix method may be successfully 
used to determine the real load of bridges on the basis of selected parameters 
measured in the bridge structure, also for complex scheme bridges, including 
the cable-stayed bridges. 

Keywords: cable-stayed bridge, forces in stays, influence functions, loads, 
monitoring, traffic congestion.

Introduction

The loads assumed in the structural analysis during the design stage 
of a bridge structure are usually of simple homogeneous form (uniformly 
distributed load combined with some concentrated forces). For large 
bridges, the analysis of loads with special (military) vehicles is also used 
to assess their exact load capacities. Over-sized vehicles, such as special 
transport, are also considered as a separate group of live loads on the 
bridges. 

The intensities of the aforementioned groups of variable loads (LS1 
… LS5) are compared for a cable-stayed bridge over the Vistula River in 
Płock, Poland (Figures 1 and 2). It is assumed that the load occurs on one 
of the two carriageways, each 8 m wide. 

Figure 1. General view of the bridge under investigation

Figure 2. Scheme of the girders in the cable-stayed part of the bridge
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LS1. Traffic loads assumed in the structural analysis of the bridge during 
the design stage 

Uniformly distributed load
q = 4.0 kN/m2 × 8.0 m = 32.0 kN/m – load distributed over the bridge 
length 
Set of concentrated forces (equivalent model of a heavy vehicle)
qK = 800 kN / 5.0 m = 160 kN/m – load occurring over the length cK = 
5.0 m 

LS2. Standard load according to Eurocode 1 (2003)
Uniformly distributed load, adjustment coefficient αq1 = 1.33, αq2 = 
2.40, αq3 = 1.20 (according to the Polish law, for the main roads)
q = 9.0 kN/m2 × 3 m × 1.33 + 2.5 kN/m2 × 3 m × 2.4 + 2.5 kN/m2 × 2 m 
× 1.20 = 59.9 kN/m load distributed over the bridge length
Set of concentrated forces (equivalent model of a heavy vehicle)
2P = 2 × 300 kN – Lane 1
2P = 2 × 200 kN – Lane 2

LS3. Loading with MLC150 military vehicles 
Group of military vehicles
q = 1514 kN /17.33 m = 87.4 kN/m over a series of segments cMLC = 2 × 
1.5 m + 14.33 = 17.33 m with gaps of 44.83 m

LS4. Load test of the bridge (during acceptance testing) with trucks in 
three parallel columns over the roadway width, with vehicle length of 
7.32 m. 

q = 3 × 286 kN / 7.32 m = 117.2 kN/m over the length depending on 
the number of vehicles in a column 

LS5. Non-standard loads (over-sized transports)
vehicle carrying a transformer with the total weight of 4060 kN and 
weight per axle 127.8 kN, while axles are spaced at 1.51 m
qa = 127.8 kN / 1.51 m = 84.6 kN/m over two lengths ca = 14 × 1.51 = 
21.14 m 
vehicle carrying a gas turbine with the total weight of 636 tons and 
weight per each axle 346.6 kN, while axles are spaced at 1.40 m
qb = 346.6 kN /1.40 m = 247.6 kN/m over the length lb = 19 × 1.40 = 
26.6 m 
The review of various types of loads presented above allows 

concluding that the nature and intensity of actions on the supporting 
structures of the bridge can be quite diverse. Real loads on road bridges, 
by their very nature, include random features, as they are composed of 
actions caused by many vehicles of various sizes and weights. This paper 
deals with the analysis of a special case of bridge operation – traffic 
congestion on the roadway caused by road collision near the bridge. 
Under these circumstances, traffic congestion occurs when the vehicles 
of unknown masses and geometry accumulate on one carriageway of 
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the bridge. Vehicles move over the full width of the roadway at very low 
speed; this can be considered a quasi-static system. This situation was 
used to evaluate the real load intensity of the roadway, which was then 
compared with the predetermined design loads and standard loads. The 
existing structural health monitoring system installed on the bridge was 
used to resolve the task (Hildebrand et al., 2008). The system includes 
but is not limited to force sensors in the selected stay cables. This 
monitoring system was constructed and operated, like on many other 
bridges all over the world, to assess safety of the structure and its users 
by evaluating external effects and monitoring structure strains and 
deflections or measuring other parameters (Inaudi, 2009; Wenzel, 2009). 
Currently, bridge monitoring systems are widespread; their operation 
allows comparing real loading conditions with the expected states.

1.	 Issues in determining the load of bridges during 
their standard operation 

Many bridges in the world are equipped with various measuring 
systems. Some of them are of permanent nature, while others are 
used temporarily. Extensive research has been carried out for several 
decades in order to develop a methodology for determining service loads 
based on the measurements of the selected parameters during bridge 
operation. This area of bridge engineering is called ‘weigh in motion’ 
(WIM) (González et al., 2008; Helmi et al., 2014; Lydon et al., 2016; 
Machelski & Hildebrand, 2015; Rowley et al., 2009). 

Usually, the influence lines of certain selected parameters are 
used, e.g., the influence lines of strains of structural elements or 
their displacements. The influence line of a selected static parameter 
allows determining the position and value of the load, however, it is 
possible in case of the simplest bridges only. Determining the bridge 
load during its operation becomes a lot more difficult problem in case 
of fast movement of successive vehicle axes close to each other. In this 
case, there are vibrations and overlapping influences from successive 
axes, which could make it difficult to identify the load correctly. Very 
fast travels of successive vehicles over a bridge cause vibrations, which 
do not damp immediately and do not allow for direct separation of 
loads in the records of the measured parameters. There are, however, 
algorithms which allow coping with this problem, these algorithms are 
based on precise modelling of bridge elements and the use of the first-
order Tikhonov regularization method (González et al., 2008). Another 
research problem related to WIM is assessment of the accuracy of 
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determining vehicle weights based on the measurements of strains at 
selected points of a bridge structure and simultaneous assessment of the 
movement speed. Research works and analyses that have been carried 
out are relatively simple in case of bridges with beam scheme and 
girder structure of the span. It has been pointed out that some methods 
used to determine the gross vehicle weight (GVW) reliably apply only 
in the situation where the bridge span is at least twice as long as the 
vehicle (Helmi et al., 2014). As it is desirable to improve the accuracy 
of WIM measurement systems, attempts are made to use new types of 
sensors, but not only (or mainly) the strain gauge sensors including the 
wireless ones. These actions have different goals: from developing light 
portable measurement systems, which could be installed in successive 
selected bridges, to elaborating the systems of high capacity to detect 
all axes of vehicles driving over the bridge, using also the visual methods 
(Lydon et al., 2016). It should be mentioned that in a series of cases, 
while determining vehicle weights on a bridge, real load from a truck is 
replaced with uniformly distributed load. Determination of loads from 
each axis is a more difficult task in WIM systems. Likewise, in case of 
beam-scheme bridges, it is a relatively simple task to develop a reliable 
measuring system, but it is more difficult to analyse measurement 
results for complex structure bridges, e.g., for cable bridges, including 
cable-stayed ones. However, research work has been already underway 
for this class of bridge structures (Machelski & Hildebrand, 2015). 
Further in the paper, an exemplary analysis and determination of loads 
on cable-stayed bridge are presented.

The presented analysis describes a rather special case because: 
	• a permanent measuring system was used, which was not intended 

to directly determine vehicle weights;
	• the existing force sensors in stays were used, but not the strain 

gauges;
	• the static scheme of the bridge is not of the beam type, it is rather 

a multi-span cable-stayed one;
	• the vehicles on the bridge were not in motion, they took almost 

constant positions over several minutes;
	• the vehicles on the bridge represented a random sample of the 

bridge load with vehicles, hence a comparison could be made 
between the existing load and standard or other loads;

	• the influence functions and matrix approach were used;
	• three various degrees of local structure discretizing were 

analysed.
The matrix method was used in analysing the structure due to its 

compact nature and complexity of results obtained (Papadrakakis 
& Sapountzakis, 2018). It should be added that despite relatively 
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long-lasting experience in constructing cable-stayed bridges over the 
world and in spite of existing complex systems of computer modelling 
and structural analyses, further analytical work is being carried out to 
improve the theoretical description of this class of structures. The works 
of Straupe & Paeglitis (2012) and Arellano et al. (2019) can be mentioned 
as an example. 

2.	 Description of the bridge and measurements 
provided by the monitoring system 

The bridge examined was put into service in 2007 (Hajdin et al., 
2004). Its total length is c. 1.71 km. It includes three main sections, the 
middle one being a five span entirely steel structure supported with 
stay cable set forming a single plane. This stayed section is 615 m long. 
Theoretical length of the longest span is 375 m. Due to the configuration 
of the bridge piers and appearance of short side spans, the structure 
was anchored to the piers using cables. Bridge pylons reaching about 
63 m above the deck are of steel column type rigidly connected to the 
span structure. The superstructure rests on the bearings and reinforced 
concrete piers. The towers and girders are box type constructions, the 
tower is a rectangular single-cell box, while the spans are three-cell 
trapezoidal boxes with side cantilevers. The deck is an orthotropic steel 
plate. On the bridge, there are two roadways, each more than 8 m wide, 
and two sidewalks, each 2.5 m wide. The total deck width is c. 27.5 m and 
the height of the box girder is about 3.5 m.  The bridge includes 28 pairs 
of Freyssinet system stay cables.

In view of the large size of the bridge and the record span of the main 
girder on the national level, and also considering the important location 
of the bridge in the national transport network, the bridge has been 
equipped with the monitoring system with 25 sensors (Hildebrand et al., 
2008). Measurements were made for the following values: 

	• forces in 8 cables,
	• rotational displacement of both pylon tops from the initial 

position,
	• strains of the steel structure in 10 points,
	• velocity and direction of wind in two points (on the deck and on 

the pylon top),
	• temperature of steel structure in two points of the main girder 

and temperature of the air inside the girder.
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3.	 Forces in cables versus load intensity of bridge 
roadway 

In order to calculate the internal forces in the main structural 
elements of the cable-stayed bridge under consideration, the flat 2D 
model can be used (Machelski & Janusz, 2017), as shown in Figure  2 
and also in Figure 3 in a more detailed form. This model uses bar/
truss elements to discrete the girder, pylons and cables (Papadrakakis 
& Sapountzakis, 2018; Zienkiewicz & Taylor, 2000). In this way, it is 
possible to create the influence lines of the internal forces. The lines are 
suitable for calculations for the case when loads change their positions 
along the roadway axis on the bridge. The effectiveness of this model 
was verified in the paper by Machelski & Hildebrand (2015). The 
calculation algorithm makes use of the axial force influence functions in 
cables f(x) in the forms shown in Figures 4 and 5. In these diagrams, the 
characteristic points are the positions of piers at distances x from bridge 
beginning: 0 m, 60 m, 120 m, 495 m, 555 m, 615 m. The cables 24 and 28 
are symmetrical to elements 5 and 1, respectively. The cables Nos. 1, 5, 
7, 12, 13, 14, 24, 28 were selected for analysis as they include the force 
sensors within the bridge monitoring system (SHM).

In the flat 2D model of the bridge, the roadway load q(x) is related 
to the axial force in cable Wk and influence function fk as given in the 
formula

	 W q x f x xk k

L

= ∫ ( ) ( ) .
0

d 	 (1)

Figure 3. Details of bar/truss model geometry of the structure (one half of 
the bridge is shown). The numbers point at the cables equipped with force 
sensors. Cables Nos. 24 and 28 are symmetrical to the cables Nos. 1 and 5 
around the CL axis
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When distributed load q(x) is fixed, different values of W exist in 
particular cables because influence functions f(x) have different shapes. 
Both functions in Eq. (1) are implicit. Due to the fact that the paper aims 
at determining the load function q(x) using exclusively the forces in 
cables W, relation (1) is not particularly useful for this solution. Usually, 
the internal forces are calculated on the basis of a given load, while this 
paper aims at completing the reverse task. A challenging element of the 
task is to map a complex form of the load function q(x), which depends on 
the random layout of vehicles on the bridge. 

Figure 5. Diagrams of the influence functions of the axial forces in the cables 
used in analysis, i.e., Nos. 7, 12, 13, 14

Figure 4. Diagrams of the influence functions of the axial forces in the cables 
used in analysis, i.e., Nos. 1, 5, 24, 28
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The task of resolving the continuous system given by Eq.  (1) was 
transformed to the task of resolving a discrete system where the span 
is divided into segments with uniformly distributed loads, as shown in 
Figure 6.

Hence, Equation (1) is transformed into a system of the following 
equations 

	 F · q = w	 (2)
and in detail
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Loads distributed on the bridge roadway segments are compiled in 
vector

	 q = col{q1   q2   q3   q4   q5   q6   q7   q8}	 (4)

and the accompanying forces in cables as in the equation

	 w = col{W1   W5   W7   W12   W13   W14   W24   W28}.	 (5)

Figure 6. Transforming a continuous system to a discrete system with 
segments of constant load qi
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In the system of Eq. (3), the elements of matrix F are the surface areas 
of the influence function f(x) sectors calculated like in the case Fk

j from 
the Simpson’s rule as follows: 

	 F c f f fk k k k
j j j j= + +( )− +

6
4 . 	 (6)

Graphic interpretation of Expression (6) is given in Figure 6 where 
points j– and j+ are the extreme points of the segment of length c. Eight 
load segments were assumed (Figures 6 and 7) due to the number 
of cables (eight) with measurements of axial forces. The division to 
segments over the length of the selected span is basically arbitrary, 
which is used further in the paper.

Function q(x) is sought for, assumed in the form of segments with 
constant values (modelling segments of uniformly distributed load), 
included in vector q. It is impossible to find qj directly from the system 
of Eq. (3) when the forces taken during the measurements on site are 
assumed as values w, that is:

	 wo
o o o o o o o oW W W W W W W W= { }col 1 5 7 12 13 14 24 28 . 	 (7)

This conclusion results from the differences between the real load on 
site, i.e., the complex function q(x), as in Eq. (1), and postulated uniformly 
distributed loads (constant over the segments with length c), in vector q, 
as in Figure 6. When low number of segments is used (rare dividing grid 
of the girder), as it happens in this analysis, the values of vector w are 
obtained on the basis of vector q instead of the values taken on site wo as 
in Eq. (7). 

For the special case, when it is assumed that uniformly distributed 
loads of constant value marked as q(k) (specific for each stay k) exist 
over the full length of the span, then from Eq.  (3) eight independent 
equations for each cable of the form are obtained:

	 W q k F q k Fk
k

k
j

k= =
=
∑( ) ( ) .j

1

8

	 (8)

Hence, Fk in Eq. (8) is the surface area under the line of influence 
function of axial force in cable k, as in the formula

	 F f x xk k

L

= ∫
0

( ) .d 	 (9)

When the forces in cables from measurements Wk
o and those 

calculated with Formula (8) as Wk
k  are compared, it results, in general, 

that proportions between them vary for various load schemes. 
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Therefore, if each equation from System (3) is assumed as independent, 
then various load values for each cable from Formula (8) are obtained, as

	 q k W
F
k
o

k

( ) .= 	 (10)

In the iterative algorithm used to calculate the effect of traffic 
congestion on the bridge, a special assumption that load q(x) is close to 
the uniform scheme along the whole bridge is made. For this reason, the 
values calculated from Formula (10) are used here as initial values of the 
iteration process. They create vector

qk q q q q q q q q= { }col ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .1 5 7 12 13 14 24 28 	 (11)

The terms of vector qk cannot be directly referred to the elements of 
vector q as the first ones are connected with cable numbers, while the 
second ones – with division to discretization segments. However, the 
elements of vector qk allow for initial estimation of terms in vector q.

4.	 Iterative algorithm of the solution 

Due to small number of cables (eight) covered by the measurements 
and a complex scheme of the construction geometry, it is necessary to 
use iterative procedure consisting in narrowing the calculation area. 
Figure 7 illustrates the segments (eight) of span division as used in the 
calculation schemes, which are marked in this paper as follows:

	• G – global, including the whole structure with the range of 
analysis 0  m < x < 615 m with segments of lengths c: 2  ×  60  m, 
3 × 90 m, 105 m, 2 × 60 m;

	• M – middle, including the main span with the range of analysis 
120 m < x < 495 m with segments of lengths c: 7 × 45 m, 60 m;

	• C – central, with the central part of the main span with the 
range of analysis 210 m < x < 390 m with segments of lengths c: 
8 × 22.5 m.

There are identical numerations of segments and separate terms of 
matrix F in Formula (3) for each of the above listed schemes. 

In the initial calculation scheme G, the elements of load vector q are 
assumed on the basis of the terms of vector qk from Eq. (11), hence the 
results of measurements included in vector wo are used. Following the 
use of Relationship (3), vector w is obtained, as shown in Formula (5). 
The iteration coefficient (%)  

	 r W W
Wk
k
o

k

k
o=
−

⋅100 	 (12)
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is calculated based on the differences between forces in the cables.
When the differences between terms of vectors w and wo are small 

enough, which is reflected in coefficient rk, the iteration in scheme G is 
terminated. 

Transition to the calculation scheme M consists in modifying vector 
wo, hence in the change of terms on the right side of Eq. (3) to the value:

	 W W F qk
S

k
o

k
j

= −∑ j

j, 	 (13)

where j = 1, 2, ... 7, 8 in scheme G. Because of shorter division grid 
segments, the terms of matrix F in Eq. (3) are modified. Coefficient rk is 
also verified in this calculation scheme. Successive transition to the next 
scheme C consists in modifying vector wS by changing the terms on the 
right side of Eq. (3) to the value

	 W W F qk
C

k
S

k
j

j= −∑ j , 	 (14)

where j = 1, 2, ... 7, 8 in scheme S. The terms of matrix F in Eq. (3) are also 
modified in this scheme. 

Figure 7. Division of the superstructure into discrete segments to determine 
a discrete model of load. Three stages of procedure are shown: G, M, C. There 
are 8 segments in each case
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Due to the differences between the accurate solution given by 
Formula (1) and approximate solutions (3) consisting in approximating 
continuous function q(x) to constant values qj on calculation segments, 
as in Figures 6 and 7, the total zeroing of coefficient rk is not attained. 
Even if the density of division into discrete elements of the model would 
be greater, the error would still remain. It should be remembered that 
calculations are made using the 2D model,  while the objective is to 
calculate the forces in the bridge cables and to compare them with the 
real values measured in the physical 3D structure loaded with complex 
loads from vehicles q(x).

5.	 Accuracy of the solution

Resulting from Formula (1), both functions, q(x) and f(x), under the 
integral implicate each other. To get solution of the equation system (3), 
it was assumed in the iterative algorithm that the loads are constant 
over the segments of length c. According to such assumption, successive 
simplifications of Formula (1) for the calculation of component Wk (over 
the section j) can be used, as in terms of the equation

	 W q x f x x q f x x q Fk k

c

k

c

k
j

j j j

jd d= = =∫ ∫( ) ( ) ( ) .
0 0

	 (15)

The final portion in Eq. (15) includes the value calculated from 
Formula (6) where the term fk(x) is as shown in Figure 6. Hence, in such 
formulation, Fk

j  can be a load-independent term of matrix F, like in Eq. 
(3).

In a general situation, when approximation of function q(x) has 
the form of the second order parabola, like function f(x), relationships 
of complex forms are obtained. Assuming a parametric approach to 
coordinates ξ = x/c, these functions acquire the forms as follows

	 f x f A B Dk ( ) ( )= + +ξ ξ2 	 (16)

and

	 q x q a b dj ( ) ( )= + +ξ ξ2 .	 (17)

On this basis, the general formula is obtained

W f q c A a b d B a b d D a b dk
j = ⋅ ⋅ + +






 + + +






 + + +











 5 4 3 4 3 2 3 2




 .

	
(18)
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wherein there are constant parameters of Eqs. (16) and (17). In the 
exemplary calculation further in the text, the convex form of function 
f(x) in the central part of the main span, as in Figure 5, was assumed. 
Geometric parameters of function fk with ordinates assumed as in 
Figure 6 are summarized in Table 1. On this premise, a simplified form of 
Formula (18) is derived as follows

	 W f q c a b dk
j = ⋅ ⋅ + +( )73 110 210 . 	 (19)

In a specific case, when load qj(x) is a linear function, so in Eq. (17) 
a = 0, Formula (6) can be still conversed to the entangled relation of the 
influence function and load:

	 W c f q f q f q qk k k k
j j

j

j

j

j

j j= + + + 
−

−
+

+ − +
6

2 ( ) , 	 (20)

where qj– and qj+ are the values at both ends of segment j, similarly as in 
case of function fk shown in Figure 6. An example of such load function is 
discussed in the next section of this paper, where the load is considered 
as an open polygon instead of being segment-by-segment variable as in 
Figure 6.

Table 1. Geometric characteristics of function f(x)

Parameters from Eq. (16) Ordinates 

A B D f(j–) f(j) f(j+)

–3 7/2 1 f 2f 3f/2

In case of function q(x), four characteristic forms are considered:
	• that of constant value, as in Formula (15);
	• that of linear variability, as in Formula (20);
	• that of convex parabola, analogous to function f(x);
	• that of concave parabola reverse to the convex one.

Table 2 summarizes parameters of the functions considered. The last 
column of Table 2 provides calculation results from Formula (19). When 
these values (related to table row no. 1) are compared, the influence of 
the shape of q(x) diagram on the calculation result is visible. Obviously, 
the results will be dependent on the quotient of the ordinate values 
of function q(x). This example shows that assuming the segments 
of constant load qj in the paper, as determined by necessity to run 
calculations with iterative algorithm, can significantly disturb the shape 
of function q(x).
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Table 2. Geometric characteristics of function q(x) 

Pos. Function 
shape

Parameters from Eq. (18) Ordinates of function q(x)
W f q c

k

j / ⋅ ⋅( )
a b d qj– qj qj+

1 Constant 0 0 1 q q q 420/240

2
Linearly 
variable

0 1/2 3/4 3q/4 q 5q/4 425/240

3 Convex –3/2 7/4 1/2 q/2 q 3q/4 376/240

4 Concave 3 –7/2 2 2q q 3q/2 508/240

The diagrams provided further in this paper show that the form of 
function q(x), by its very nature, is very complex. This effect – variation 
of the shapes of q(x) function – is not considered in the results of the 
calculation algorithm applied. This leads to system errors, which are 
located in the terms of matrix F. This note is the basis for justifying the 
conclusion on the inefficiency of the direct solution of the system of 
equations (3), and also on the shortage of zeroing the iterative coefficient 
from Formula (12).

6.	 Exemplary calculations

The results of calculations related to the measured forces included 
in the following vector are the example of the implemented iterative 
procedure:

wo = col{3.5   2.7   1.7   3.8   3.9   3.2   2.5   3.8}, MN.	 (21)

Figure 8. Traffic congestion on the bridge under consideration

a) b)
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The values of the forces correspond to the load caused by the 
traffic congestion shown in the photos (Figure  8). Both photos were 
taken by the video monitoring system. At that time, like each day, the 
measurements were taken by the bridge structure monitoring system. 
As it can be seen, the right roadway was free of any essential load. Photo 
b) was taken about 1 minute after Photo a) was taken. 

This was the basis for calculating the elements of vector qk using 
Formula (11); they are provided in Table 3.

Table 3. Loads of bridge roadway as the terms of vector qk, kN/m

Scheme
Numbers of cables 

1 5 7 12 13 14 24 28

G 57.74 40.12 39.68 59.12 66.58 64.90 37.14 62.69

M 57.76 40.08 40.45 59.04 66.51 64.79 37.61 62.57

C 60.12 41.64 43.25 63.32 70.96 68.20 34.48 66.89

Table 3 should be read as follows (for instance): in the column marked 
1 (number of the stay) there are values of loads calculated on the basis of 
the influence function of stay No. 1 and the real force measured in stay 
No. 1. And so on. 
When the values in columns of vector qk are compared, a small change in terms 
of the right side of Eq. (3) for schemes G and M can be observed. In case of 
scheme C, there is a higher modification of free terms. When the aforementioned 
algorithm was used, the resultant values of q after several iterations were as given 
in Table 4. Iteration was terminated when coefficients rk from (12) amounted 
to several percents. Obviously, there are no relationships between the figures 
from the columns of Table 4 referring to schemes G, M, C, as according to 
Figure 7, these are segments located in other places. However, when the values 
are compared, it may be noticed that the results from Table 3 used in the iteration 
process are helpful. 

Table 4. Loads of bridge roadway as the terms of vector q, kN/m

Scheme
Numbers of segments (Figure 7)

1 2 3 4 5 6 7 8

G 52.3 38.3 24.8 60.8 69.7 52.4 48.4 56.3

M 36.7 34.1 40.6 65.8 77.9 71.8 54.2 43.9

C 36.1 49.1 61.3 76.8 80.2 75.7 55.1 59.1
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For instance, analyzing scheme G, term q = 60.8 kN/m for segment 
No. 4 can be found. The same value can be found in Figure  9, curve G, 
above the abscissa 262.5 m, i.e., in the mid-point of segment No.  4 in 
scheme G. Similarly, analyzing scheme C, term q = 76.8 kN/m for segment 
No. 4 can be found. The same value can be found in Figure  9, curve C, 
above the abscissa 296.25 m, i.e., in the mid-point of segment No.  4 in 
scheme C (Figure 7), etc.

Figure 9 illustrates the results from Table 4. Compatibility of 
calculation results for schemes G, M, C is a positive feature of these 
diagrams. Obviously, the best representation of function q(x) is for the 
range 210 m < x < 390 m when the segments in scheme C are of minimum 
length c = 22.5 m. Striving for further division of segments in scheme C 
seems unjustified due to iterative mode of running to the results. On the 
other side, a change in locating the modelling scheme C, e.g., 120 m < x < 
210 m or 390 m < x < 495 m is recommendable. An attempt to include the 
range 0 m < x < 120 m is ineffective due to small values of ordinates in 
diagrams f(x) given in Figures 4 and 5. 

Due to relatively small values of ordinates of the influence line near 
the supports, the results obtained for the sections of the span located 
very close to the piers are less reliable, see Figures 4 and 5.

Figure 9. Calculated load intensity for the main span

0

10

20

30

40

50

60

70

80

120 145 170 195 220 245 270 295 320 345 370 395 420 445 470 495

x, m

q, kN/m

M

G

C
Central part, model C

Main span, model M



83

Czesław Machelski, 
Maciej Hildebrand

Cable-Stayed Bridge 
Loads Caused 
by Traffic Congestion 
on the Deck 
Measured With 
Bridge Monitoring 
System

7.	 Numerical analysis of the central part of the river 
span 

The example above referred to the initial phase of traffic congestion 
on the bridge. During the later phase of congestion (from several minutes 
to two hours later), the cable forces changed due to the changes in 
vehicle positions. Figure 10 illustrates changes of forces in particular 
cables in the next moments of time.

Successive schemes, i.e., C1, C2, C3, C4, occurred in the subsequent 
time intervals. Table 5 provides selected results of the measurements. 
Such moments were selected when the highest forces took place in cables 
1, 5, 7, 12 (marked with bold). Rows of Table 5 include the terms of vector 
wo in Formula (15).

Table 5. Cable forces from the measurements – terms of vector wo, MN

Measurement 
scheme

Numbers of cables
1 5 7 12 13 14 24 28

C1 4.44 4.05 2.62 5.70 5.35 4.63 5.40 5.43
C2 4.18 5.40 3.47 5.53 4.67 3.17 3.26 3.79
C3 3.39 4.26 3.79 4.53 3.68 2.53 2.11 2.87
C4 4.44 4.05 2.62 5.70 5.35 4.63 5.40 5.43

Figure 10. The distribution of the load of the central part of the main span 
during traffic congestion (successive schemes C1, C2, C3, C4)
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Figure 10 illustrates the diagrams of loads q(x) for the central part 
of the main span 210 m < x < 390 m from the calculations in scheme C. 
Significant changes of load intensity during successive congestion phases 
considered can be seen here. In case when the values of q are close to 
100 kN/m, the situation is interpreted as the effect of heavy vehicles 
concentration in some parts of the bridge. Intensity of this load is similar 
to the values used during acceptance testing of the bridge. The results 
shown in Figure 10 can be compared with the dead weight of the span. 
The dead weight of the span is about 150 kN/m.

It should be noted that there were no substantial changes of the 
temperature of the structure, as traffic congestion appeared in the 
afternoon in December. Following the analyses of the records of 
the forces in stays during the whole day, when the described traffic 
congestion event occurred, the following conclusion was derived: The 
influence of loads due to traffic congestion on the forces in stays was at 
least 3 (usually up to 5) times larger than the influence of temperature 
changes (during the observed period of congestion). So the problem 
of temperature influence in this task was assumed as a not significant 
factor and was not included. However, in a general situation (load event 
lasting for many hours, especially in the warm season), the influence of 
temperature changes in such tasks cannot be disregarded. 

8.	 Load in the form of solid open polygon 

Row 2 in Table 2 is an example of linear function applied on the 
analyzed segment with length c. In this approach, Relation (6) was 
formulated as the entanglement of functions q(x) with f(x). Figure 11 
provides a proposal of calculation scheme S (Figure 7), with function 
q(x) in a form of an open polygon. Two adjacent segments with common 
point j were considered. Assuming the marking of function fk(x) and 
q(x) as in the scheme (Figure 11), two equations created on the basis of 
Formula (20) are obtained:

	 W c f q f q f q qk k k k
j j

j

j

j

j

j j

− −
−

−
−= + + + 6

21

1 1( ) 	 (22)

and

	 W c f q f q f q qk k k k
j j

j

j

j+

j

j j

+ + +
+= + + + 6

21

1 1( ) . 	 (23)

Assuming qj as the value being analysed from these two formulas, the 
following term can be created: 
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	 W
q c

f f fk k k k
j j j j j= + +( )− +

3
	 (24)

and from here, the term of matrix F as follows

	 F c f f fk k k k
j j j j= + +( )− +

3
. 	 (25)

It results from Figure 11 that for this calculation model, the value 
obtained in (25) covers two segments with length 2c with the common 
node j. For this approach, it is very important to separate the loads 
existing in Formulas (22) and (23). It enables to formulate a system of 
equations such as Eq. (3) with vector of load q and that of free terms w. 
However, the interpretation of the essence of terms qj is quite different – 
terms qj are the values at points of division to segments (Figure 11) but 
not the constant values over the whole segment with the central point, as 
in Figure 6. The terms of matrix F are also subject to change – previously, 
they were calculated from Formula (6), but now from Eq. (25).

The data from vector (21) were used as exemplary calculations 
using the presented algorithm. The results of the calculations are given 
in Table 6. Similar values can be observed comparing the results for 
scheme C from both Table 4 and 6. The same grids dividing the span into 

Figure 11. Function of the influence and load in modelling scheme M
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segments are used in both calculations. The differences refer to the form 
of the approximated loads as in Figures 6 and 11. Similar conclusion was 
drawn comparing the values in rows 1 and 2 in Table 2.

Table 6. Load intensities in the nodes of span division grid, q, kN/m

Scheme
Number of segments 

1 2 3 4 5 6 7 8

G 52.3 38.3 39.1 49.1 57.9 54.3 48.4 56.3

M 31.2 29.1 32.2 57.2 69.1 64.3 41.4 38.9

C 22.7 44.4 60.6 76.3 79.6 73.8 52.8 54.3

As in this paper the iterative algorithm is used instead of resolving 
the system of Eq. (3), it is possible to use larger (or smaller) number of 
displacement vector terms (e.g., nine as in Figure 11), than the number 
of measurements in the cables (eight). Hence, the calculation scheme 
assumed in Figure 11 can be presented in the following form
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This example leads to the conclusion that basically any division grid 
over the span length can be used, as well as the segments of various 
lengths. Therefore, the schemes given in Figure 7 can be combined into 
one calculation system. The result of iteration is an open polygon of load, 
as shown in Figure 11. However, it should be noted that the real load 
function is a complex one and the calculations just approximate it.

Conclusions

According to the discussion presented above, it is possible to map 
the forms and values of loads existing on the bridge with a relatively 
complex structural layout on the basis of the forces in several cables. 
Obviously, this representation demonstrates only limited accuracy. The 
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procedure consisting in making use of the influence function and matrix 
approach is known for a long time (Papadrakakis & Sapountzakis, 2018; 
Zienkiewicz & Taylor, 2000). However, some innovation lies in the use of 
various levels of discretization of the structure or its fragmenting into 
smaller elements. 

An iterative (three-stage) algorithm was used; it consists in 
shortening the segments under analysis over the bridge length as the 
area to determine the roadway load in the successive iteration step. 
Efficiency of such solution was demonstrated in exemplary analyses. 
The results of numerical analyses proved high intensity of load recorded 
during traffic congestion as compared with the loads specified in design 
criteria or codes (for instance, Eurocode). Hence, the analyses carried 
out provide a substantial result – an opportunity to compare the load 
of vehicles that create traffic congestion with the standard load, both 
with the one that is currently known, included in Eurocode, and the load 
from the previous standard, which had been used to design the bridge in 
Płock. 

Comparison of the loads (see Introduction of this paper) is 
summarized in Table 7. The data shown in Table 7 can be compared with 
self-weight of the span, which is equal to approximately 150 kN/m. 

Table 7. Comparison of bridge loads

Load type LS1 LS2 LS3 LS4 LS5

Load with 
vehicles standing 

in traffic 
congestion 

Value and 
scheme 
of the 

distributed 
load 

32 kN/m
+160 kN/m 
locally (over 
a length of 

5 m)

59.9 kN/m
+ 

417kN/m 
locally

87.4 kN/m 
on 

segments

117.2 kN/m 
on limited 
segments 

128–248 kN/m 
on limited 
segments

up to 80.2 kN/m

The iterative algorithm assumes that q(x) is nearly uniform. The 
results given in the example prove the efficiency of the calculation 
procedure. It was attained using the iterative algorithm. The best 
accuracy was reached in the central part of the bridge, which results 
from relatively high values of influence line ordinates f(k). The r 
coefficients of several percents were reached in the example analysed. 

The areas where loads q were close to 100 kN/m were interpreted 
as the effect of heavy vehicles concentrating in the bridge area under 
consideration (Figure 8). Local increase of this load, which was reaching 
80…100 kN/m (Figure 10) as demonstrated in the above analysis, is 
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comparable with the load generated by military transport (87.4  kN/m) 
or by trucks used in the acceptance testing (117.2 kN/m) of the bridge in 
question.

The following conclusions can be made considering the results of the 
calculation example presented above:

	• the matrix method is an effective way to determine the causes 
(operational loads) examining the effects (forces in the selected 
stays);

	• it is possible to determine not only the average load for the whole 
span, but also to point out span sections of various load values;

	• solution of the task is possible also for the limited data taken from 
properly located sensors of suitably chosen parameters.

It should be stressed that the analysis aiming at determining bridge 
load during its operation (WIM) may be applied not only on the beam 
structures, but also on more complex objects, including cable-stayed 
bridges; examples of such analyses for cable-stayed bridges are hardly 
available in the current literature on the subject. The above-described 
case, including the proposed methodology of the procedure, bridges this 
gap to a certain extent.
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