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Abstract. This paper studies the effect of automated vehicle implementation on 
transport system emission from a macroscopic point of view. The paper considers 
several scenarios differing in passenger car unit (PCU) and the penetration share 
percent of automated vehicles in the system using PTV Visum software. The study 
presents that automated vehicles reduce total emission by both the effect of smooth 
driving of each automated vehicle independently and the spread of automated 
vehicles in the network. Furthermore, apart from considering the effect of different 
PCU values and penetration levels, the developed model takes into account three 
different types of emissions and seven different vehicle classes.

Keywords: automated vehicles, emissions, macroscopic, modelling, passenger 
car unit, penetration.

Introduction

The increased concentration of greenhouse gases (GHGs) (carbon 
dioxide, methane, nitrous oxide, and fluorinated gases) in the 
atmosphere, especially considering carbon dioxide (CO2) concentration, 
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can intensify temperature rise. This process can further accelerate 
climatic changes, which can lead to disastrous outcomes for our 
civilisation. Increasing concentration of CO2 and other GHGs can be 
strongly related to the increased level of human activities related 
emissions. It is estimated that the total CO2 equivalent GHG emission 
increased from 22.5 gigatonnes to 50.9 gigatonnes between 1990 and 
2018 with a 1.3% average yearly growth (Olivier & Peters, 2018).

Nitrogen oxide gases are formed from the reaction between nitrogen 
and oxygen during the burning of fuel. The emission of NOx gases 
can result in smog and acid rain, strongly related to health effects. 
Particulate matters (PM) involve minuscular solid and fluid particles 
that can be inhaled, resulting in severe health issues for living beings.

The transportation sector is one of the major energy-consuming 
sectors responsible for 27% of global primary energy demand and is 
responsible for 14% of greenhouse emissions (WEC, 2016). It has to be 
mentioned as well that 95% of the world’s transportation energy comes 
from petroleum-based fuels, largely gasoline and diesel (Kirby, 2008). 
Road transport gives 72.8% of the total emission of the transportation 
sector (European Union, 2016). Road transport is responsible for 39% 
of nitrogen oxide emissions and 11% of fine PM2.5 emissions in Europe 
(European Environment Agency, 2020). The idea of automated vehicles 
(AV) appeared in the 1920s; the first driverless vehicle was introduced in 
1921 at an airbase in Ohio, which was only a remotely controlled vehicle. 
This idea becomes more and more realistic and feasible over the years 
until it reaches the fully automated transport system concepts. However, 
numerous questions have emerged concerning the issues and challenges 
related to the future automated transport systems. Generally, the 
difference between automated and autonomous vehicles is the degree 
of human interaction. An autonomous vehicle decides the destination 
and what route to take; however, the automated vehicle would follow 
destination and route orders and then drive itself.

(Iacobucci, McLellan & Tezuka, 2018) have presented an up-to-
date modelling framework to analyse the economic and financial 
sustainability of a connected and automated vehicle system. The 
investigation has shown that an automated vehicle in the analysed Tokyo 
model can replace about 7–10 vehicles. Barth and Boriboonsomsin’s 
study proves that the eco-driving concept can reduce fuel consumption 
by 10–20%, where properly programmed automated vehicles will be able 
to fully operate in accordance with the principles of eco-driving (Barth 
& Boriboonsomsin, 2009). Studies conducted in the USA indicate that on 
motorways with an automated vehicle share of 90% of the total traffic, 
fuel consumption can be decreased by 25%, and delays can be decreased 
by 60% (Fagnant & Kockelman, 2015). With regard to the positive 
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to GHG emissions can expect from slight increases to 80% reductions 
(Vimmerstedt et al., 2015). The estimated changes in the level of 
emission are mainly assumed to be affected by the following key factors: 
level of automation, the share of implementation, the type of automated 
vehicles, and behavioural responses. In accordance with the related 
SAE (Society of Automotive Engineers) level of Automation standard 
(Heinzelmann et al., 2012), the level of automation is classified into six 
levels: no automation, driver assistance, partial automation, conditional 
automation, high automation, and full automation. Potential energy 
consumption and GHG emission reduction are expected to be achieved 
through the positive factors of congestion mitigation and efficient 
routing caused by automated vehicles. On the other hand, these factors 
can also support the safety improvement of the system. Automated eco-
driving is another important factor resulting in more efficient operation, 
less braking, and efficiently controlled acceleration and deceleration 
(Obaid & Szalay, 2019).

AV will also operate in a smoother driving mode, which will 
expectedly result in reduced acceleration values. Based on the reviewed 
studies, it can be estimated that reducing the acceleration time from 0 to 
60 mph by 1% can increase fuel consumption per distance unit by 0.44%. 
For this reason, instead of increasing the engine power and acceleration, 
it would be advisable to reduce fuel consumption (MacKenzie, 2013; 
Igliński & Babiak, 2017).

AVs will be able to be operated with a reduced following distance. 
As proved by Japanese research where three loaded lorries were 
platooned at a speed of 80 kmph in case of 4 m following distance, the 
fuel consumption reduction in the case of the first lorry achieved 8%, for 
the second lorry the reduction achieved the 23%, and for the last lorry 
fuel consumption reduction was 16% (Tsugawa, 2013). In light of these 
results, the fuel consumption reduction caused by AVs will expectedly 
reduce future greenhouse emissions.

The present research aims to study the effect of automated vehicles 
on a macroscopic level with regard to CO2, NOx, and PM2.5 emission 
related to the transport sector. The effect is evaluated without 
considering significant fuel consumption reduction caused by technology 
development. The reason is the highlighted aim of the study, which 
intends to minimise the probability of overestimating positive effects. 
Therefore, a conservative estimation concept is applied during the 
research to determine if even automated vehicles consume the same 
amount of fuel without considering the possibility of an electrified 
vehicle fleet or the savings derived from the more efficiently organised 
transportation processes, especially considering junction crossings. The 
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research investigates several scenarios differentiated by the considered 
parameters (PCU, penetration). Furthermore, the study aims to define 
the estimation model of the analysed emission categories with regard 
to the considered mobile parameters. This output makes it possible to 
provide an estimation framework depending on the combination of the 
considered model parameters. This concept allows us to predict the 
expected effects of certain interventions influencing the considered 
automated vehicle-related model parameters of the evaluated transport 
systems.

This article is structured as follows: Section 1 describes the selected 
model and explains the methodology used. Section 2 presents the results 
of model simulation and developed mathematical models for different 
road transportation pollutants. Section 3 discusses the results obtained. 
Finally, in the conclusion, the authors describe the contribution of this 
study, its limitations, and future research recommendations.

1. Experiments

In the next session, a short description of the used model and applied 
methods is presented.

1.1. Model description

The Hungarian EFM (Egységes Forgalmi Modell, Uniform Traffic 
Model) model is based on Budapest’s official macroscopic model 
created and maintained by the Transport Corporation of Budapest. The 
macroscopic model of Budapest is developed in the PTV Visum software 
environment. The originate-destination structure of EFM has more than 
920 internal zones and more than 20 agglomeration zones. There are 
about 1.7 million vehicle trips in the complete model; the map below 
describes an average weekday traffic structure. The network consists 
of more than 10 500 nodes and more than 30 000 connectors. The 
equilibrium assignment method of PTV Visum software has been used to 
demonstrate the daily transportation processes.

The model used real-world traffic parameters for the city of 
Budapest. Volumes, origin-destination matrices, road speeds, and 
capacities reflect the real conditions of Budapest. The model also 
considers both public and private transportation modes. The present 
research focuses on the private transportation modes, which contain 
three passenger car classes (cars, automated vehicles, and taxis) and 4 
heavy vehicle classes. Figure 1 below shows the used EFM model.
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The research methodology aims to evaluate the impact of the 
considered model parameters related to the representation of automated 
vehicle characteristics. Accordingly, the first investigated parameter 
is the proportion of daily trips performed by AV compared to the total 
number of daily trips defined as penetration. Penetration values vary 
from minimum 0% penetration (all cars are traditional passenger 
vehicles) to maximum 100% penetration (all cars are automated 
vehicles). The complete interval of the investigated domain is divided 
equidistantly by 10% steps.

The second investigated parameter refers to the effect of Passenger 
Car Unit (PCU) values with regard to the automated vehicles. PCU 
reflects how much impact a specific transport mode has on traffic 
variables (density, saturation, speed) compared to one average 
passenger car (e.g., private car = 1, motorcycle = 0.5). In case of this 
study, PCU values are considered to be 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 
0.80, 0.85, 0.90, and 0.98 for AV (Árpád et al., 2018). The selected values 
are chosen to cover the expected range of AV effects since no exact value 
can be chosen. Also, a large dataset is needed to develop mathematical 
models for the three selected emission pollutants in the study.

Figure 1. Budapest EFM model
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The reason for modifying the PCU values of AV is their expected 
positive influence on network capacity and saturation characteristics 
(Bernhard, 2016). These factors are directly affected by PCU values. 
In the case of AV, a reasonably lower level of following distance can be 
assumed since following distance depends primarily on the path length 
needed to prevent the collision of the investigated vehicles. If a normal 
driver’s stopping distance is investigated, its needed timeframe can be 
divided into reaction time and braking time (Green, 2000). However, in 
the case of automated vehicles, the effect of reaction time is expected 
to be minimised. This is assumed to decrease following distance and 
increase network capacity. Besides, the vehicle walking time and parking 
time are also expected to be reduced in the case of automated vehicles.

As mentioned previously, the research mainly focuses on the private 
transport modes; accordingly, Table 1 classifies each private transport 
mode and their considered PCU value.

Table 1. Private transport modes and their PCU (1 – Passenger Car,  
2 – Heavy Vehicles)

Mode Class PCU

PC1 Automated vehicle 0.50–0.98

PC Car 1.0

PC Taxi 1.0

HV2 Light 1.0

HV Medium 1.4

HV Buses & Coaches 1.8

HV Heavy 2.5

The evaluation process consists of repeated investigations regarding 
the combination of modified input parameters of penetration and PCU 
of AV. The task of the assignment problem is to program vehicles in 
every model step to routes characterised by the lowest travel cost. The 
problem is solved when an equilibrium state is achieved, and no trips 
can be programmed to other paths with lower travel costs (Pia̧ tkowski 
& Maciejewski, 2013). In the first phase, PCU values are modified as 
external variables, and penetration value remains unchanged. Then, 
when all the PCU values are utilised in the given penetration value, they 
can also be modified. This approach ensures to cover the predefined 
interval of the analysed model parameter domain. Accordingly, these 
steps are repeated until all penetration values are calculated.
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network helps us estimate any journey-related information such as 
travel time and distance, speed, and delay. The next step is to evaluate 
transport emission for each mode in the different scenarios using the 
calculated travel distance. As mentioned previously, the emission level is 
estimated in the case of the following gas: carbon dioxide (CO2), nitrogen 
oxides (NOx: NO2 and NO) given as NO2 equivalent, and particular 
matter (PM = PM2.5) (Ntziachristos et al., 2019; Paton-Walsh et al., 2018). 
Figure 2 shows the framework of the selected methodology.

Figure 2. Methodology framework
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Vehicular emission models calculate the level of emissions for 
different pollutants. The models depend on several factors: emission 
factor, fuel consumption, average speed, volume and traffic composition 
of the road network (Esteves-Booth et al., 2002). Emission factor models 
use simple calculation for finding emission levels. They use a mean 
calculated emission factor for a specific class of vehicles for a specific 
road type (Fallahshorshani et al., 2012). Average speed models are 
built on speed-emission functions. These functions are calculated by 
measuring emission rates over several trips with different speeds (Knez, 
2013). Average speed models are regularly used in measuring emission 
inventories on a road network scale (Esteves-Booth et al., 2002).

Traffic models depend on the average traffic volume and the traffic 
composition (vehicle categories). Traffic models calculate emissions 
in terms of the mass of pollutants produced per vehicle distance of fuel 
and are usually used in regional and national emission estimations 
(Fallahshorshani et al., 2012). As described before, the model used 
for the study is the city of Budapest. Since traffic volumes and vehicle 
categories are the main inputs, the traffic emission model is used 
for emission calculations. Table 2 shows the unit factors for each gas 
emission and transport mode, in grams/kilometres based on the 
European Environment Agency (EEA) guidebook (Ntziachristos et al., 
2019).

The emissions unit factors for AV in Table 2 were calculated using 
anticipated emission reductions factors of smoother driving by AV; 
19.09% for PM2.5, 15.51% for NOx, and 6.55% for CO2 (Liu, Kockelman, 
& Nichols, 2017). The reduction factors were used on the EEA CAR 
emissions factors (Ntziachristos et al., 2019).

Table 2. Private transport mode emission factors

Mode Carbon Dioxide 
CO2, g/km

Nitrogen Dioxide 
NOx, g/km

Particular Matter 
PM2.5, g/km

Automated vehicle  207.30  0.516  0.0017

Car  221.83  0.611  0.0021

Light  237.675  1.030  0.0783

Medium  253.52  1.193  0.1220

Buses & Coaches  1584.5  6.500  0.0100

Heavy  760.56  8.010  0.2260

Taxi  221.83  0.611  0.0021
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emission (CO2, NOx and PM2.5) has been analysed for both passenger cars 
and heavy vehicles. Since a reasonably complex relationship structure 
can characterise the analysed data, the nonlinear regression analysis 
was chosen to find the best model. In general, the statistical analysis 
of nonlinear regression function ‘f’ relates a vector x (independent 
variables) and y (dependent variable) using components of the vector of 
parameters β, which is nonlinear to function f: y x~ , )f( β .

TableCurve 3D has been used to identify the proper estimation model, 
which can provide a more efficient estimation with regard to the amount 
of emission reduction compared to the other investigated functions. 
TableCurve 3D software uses a wide collection of linear and nonlinear 
models: linear equations, Polynomial and rational functions, logarithmic 
and exponential functions, nonlinear peak functions, nonlinear 
transition functions and nonlinear exponential and power equations. 
Nonlinear exponential and power regression were used in TableCurve 3D 
software to find the best-fitted surface for the three factors: penetration, 
PCU and emission reduction. They were chosen since they gave the most 
minor statistical errors, shown in the values of R2 calculated for each 
developed model (Obaid & Torok, 2021).

2. Results 

2.1. Baseline emissions and attributes

There have been no automated vehicles considered in the model in 
the baseline scenario, so the penetration is assumed to be 2% since a 
basic level of automation is already available on the market. Accordingly, 
the baseline emission values are the reference point for the evaluation 
focusing on the effect of automated vehicles. Table 3 presents the 
baseline emission values and daily travelled kilometres.

Table 3. EFM model baseline emissions and attributes

  Unit Car Taxi Light Medium Buses & 
Coaches Heavy Total

Travelled, km 1000 km 32 369 616 6069 581 6271 2865 48 771

CO2 Metric Ton 7180 137 1446 148 9964 2185 21 060

NOx Kilogram 19 777 377 6268 695 40 875 23 015 91 007

PM Kilogram 67.97 1.30 477 71.1 62.9 649 1329
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2.2. Emissions

2.2.1. Passenger car
Figs. 3–5 represent the model calculated output values (generated 

from the combination of the different PCU and penetration values) and 
the fitted function concerning passenger car relative emission reduction 
factors for CO2, NOx, and PM2.5, respectively. The three figures also 
represent the best-fitted surface developed for the three emissions. 
CO2 reduction varies from a minimum of 0.65% to a maximum of 7.93% 

Figure 3. Carbon dioxide emissions of passenger cars: (a) passenger car 
CO2 relative emission reduction; (b) best-fit surface model for passenger 
car CO2 emission reduction

Figure 4. Nitrogen oxide emissions of passenger cars: (a) passenger car 
NOx  relative emission reduction; (b) best-fit surface model for passenger 
car NOx emission reduction

a)

a)

b)

b)
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16.59%, and PM2.5 varies from a minimum of 1.89% to a maximum of 
20.04% reduction.

The developed model for the best-fit surface for the relative 
passenger car emission reduction presented in Figs. 2–4 is represented 
in Eqs. (1)–(3) regarding CO2, NOx and PM2.5. The value of the R2 
statistics measure is 96.7% for CO2, 96.4% for NOx, and 92.8% for PM2.5.

PC CO2 Relative Emission Reduction (%) =
e ^ [0.423 + 0.93X2 − 2.27X2.5 + 1.08X3 − 0.014 Y lnY + 0.14(lnY)2 − (2.84/lnY)], (1)

PC NOx Relative Emission Reduction (%) =
e ^ [1.072 – 0.16X lnX − 0.086 X lnX + 0.14 (lnY)2 − 0.086 Y 2  − (3.41/ Y )], (2)

PC PM2.5 Relative Emission Reduction (%) =
−17.43 – 0.81X + 7.60 ln Y – 0.60X 2 + 0.011(ln Y)2 – 0.0025X ln Y, (3)

where: X – PCU factor, Y – penetration in percentage.

Figure 5. Fine Particulate Matter emissions of passenger cars: 
(a) passenger car PM2.5 relative emission reduction; (b) best-fit surface 
model for passenger car PM2.5 emission reduction

a) b)
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2.2.2. Heavy vehicles
Since four different heavy vehicle categories have been differentiated 

in the model, and the passenger car-related input parameters and the 
heavy vehicle-related output parameters are proved to be related in 
a completely different way in case of the different emission factors, 
the relative reduction for all three emissions has been separately 
investigated in the certain scenarios.

Emissions of heavy vehicles are calculated for each scenario to 
investigate whether the penetration of automated vehicles influences 

Figure 6. Carbon dioxide emissions of heavy vehicles: (a) heavy vehicle CO2 
relative emission reduction; (b) best-fit surface model for heavy vehicle CO2 
emission reduction

Figure 7. Nitrogen oxide emissions of heavy vehicles: (a) heavy vehicle NOx 
relative emission reduction; (b) best-fit surface model for heavy vehicle NOx 
emission reduction

a) b)

a) b)
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in CO2, NOx, and PM2.5  and the best model for each in case of the heavy 
vehicle class. CO2 varies from a minimum of 0.29% to a maximum of 
0.63% reduction, NOx varies from a minimum of 0.29% to a maximum 
of 0.60%, and PM2.5  varies from a minimum of 0.30% to a maximum of 
0.77% reduction. 

Eqs. (4)–(6) represent the estimation model of relative emission 
reduction with regard to CO2, NOx, and PM2.5  in the case of heavy vehicle 
class. The value of R2 statistics measure is 82.3% for CO2, 81.2% for NOx, 
and 85.9% for PM2.5.

HV CO2 Relative Emission Reduction (%) =
−0.2221 + 0.6468(e−X) + 0.03761 Y , (4)

HV NOx Relative Emission Reduction (%) =
−0.2019 + 0.6071(e−X) + 0.03631 Y , (5)

HV PM2.5 Relative Emission Reduction (%) =
0.741 − 0.7772 X  + 0.0459 Y , (6)

where: X – PCU factor, Y – penetration in percentage.

Figure 8. Fine Particulate Matter emissions of heavy vehicles: (a) heavy 
vehicle PM2.5 relative emission reduction; (b) best-fit surface model for 
heavy vehicle PM2.5 emission reduction

a) b)
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3. Discussion

Implementing AV in the network traffic flow with different 
penetration levels affected several traffic key factors: travelled distance, 
travelled time, speed and delay (Obaid & Torok, 2021). The adopted 
methodology predicted the percentage of reduction in three types of 
GHG emissions resulting from the decrease in total travelled kilometres 
only. Road transport emission reduction resulted from replacing 
conventional cars with AVs is mainly because of smoother driving of AVs. 
However, the result showed that the spread of AVs in the whole network 
resulted in an additional decrease in emissions. The improvement 
in emission reduction can be mostly shown in the 100% penetration 
scenarios where reduction of all three emissions is higher than the 
expected reduction from the smoother driving factor alone. Although 
it is a relatively small effect, even by ignoring the factor of efficiency 
improvement effect of automated transport modes or the electrified 
vehicle fleet, there will be a positive effect in reducing environmental 
pollution (Csiszár et al., 2019; Aradi, Becsi & Gaspar, 2014; Bartolini, 
Tettamanti & Varga, 2017; Ma & Zhang, 2018; Tettamanti et al., 2016; 
Szalay et al., 2017). The additional improvement can be shown by 
comparing CO2 7.93%, NOx 16.59%, and PM2.5 20.04% reduction results 
with Liu et al. finding of 6.55% for CO2, 15.51% for NOx, and 19.09% for 
PM2.5 (Liu, Kockelman & Nichols, 2017; Obaid, Torok & Ortega, 2021).

The results also validate that AV presence affects the emission of 
other vehicle classes as well, even if only marginally. The impact on other 
vehicles classes may be explained by reducing congestion, travel time 
and travelled trip distances in a more efficient road network caused by 
AV spread. 

Automobile manufacturers have invested significant resources in 
AV technology development; however, studies of the expected impacts 
of AVs on the transportation system are minimal. The six developed 
mathematical percentage of reduction models for the three selected 
emissions will assist stakeholders in predicting future road transport 
emissions for various AV penetration rates. The findings may help 
authoritsies and decision-makers better understand the opportunities of 
AVs in reducing GHG emissions and mitigating global warming.
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This paper has investigated the estimated emission values of 
CO2, NOx, and PM2.5 assuming the spread of automated vehicles in 
a macroscopic model framework. The study has analysed the real 
urban framework of the Budapest EFM model using Visum software. 
Automated vehicles have only been considered the class of passenger 
cars (automated vehicles) where several scenarios have been performed; 
the scenarios differ in assumed PCU of AV and AV penetration compared 
to the total number of passenger cars used in the model. The results have 
been classified into two classes: 

firstly, passenger car class has been evaluated, where the relative 
reduction in emission varies:

−	 CO2 reduction varies from a minimum of 0.65% to a maximum of 
7.93%; 

−	 NOx varies from a minimum of 1.53% to a maximum of 16.59%; 
−	 and PM2.5 varies from a minimum of 1.89% to a maximum of 

20.04% reduction.
The reduction is due to automated vehicle smooth driving and the 

deployment of automated vehicle fleets in the transportation network 
at various penetration levels (lower travelled kilometres in the whole 
network).

The second class is heavy vehicles where:
−	 CO2 emission reduction varies from 0.29% to 0.63%;
−	 NOx emission reduction varies from 0.29% to 0.60%;
−	 and PM2.5 emission reduction varies from 0.30% to 0.77%. 
This result shows that the emission values of other vehicle classes 

using the network are also slightly affected by the spread of automated 
vehicles.

The final part of the study introduces the developed multiple 
mathematical models applicable to predicting the relative emission 
reduction for both passenger car class and heavy vehicle class. The 
applied explanatory variables of the model are the PCU of automated 
vehicles and the penetration of automated vehicles. The R2 values for 
the passenger car class are CO2 96.7%, NOx 96.4% and 92.8% for PM2.5, 
while the R2 values for the heavy vehicle class are CO2 82.3%, NOx 81.2%, 
and 85.9% for the PM2.5 model. The developed models can be a helpful 
tool for future stakeholders and decision-makers to have a deeper 
understanding of AV future on the road transportation network. The 
results can also provide local government with a valuable opportunity to 
address their road transportation-related environmental issues.

The study has only focused on private transportation modes, not 
taking into account public transportation services; this is due to the 
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lack of data available for public transport. This study can also be further 
extended by examining the impact of AVs combined with different 
mobility policies and technologies, park and ride (P&R), ride-sharing 
and car-sharing. Future research also includes focusing on the analysis 
of the expected change in car-ownerships with AV implemented in the 
transportation network.
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