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Abstract. Rutting is the main distress form of asphalt pavement, and its 
prediction accuracy is directly related to the reliability of the designed road. 
This research developed a neural network model to improve the prediction 
ability about the rutting of a pavement performance criterion and compared 
it with the multiple linear regression model and the existing neural network 
model. The neural network model is developed using the Keras module from 
the TensorFlow package in Python. Two reports generated by the National 
Cooperative Highway Research Program project 01-37A and the Long-Term 
Pavement Performance website records have been used as data sources for 
training the neural network model, which are reliable data preserved after 
years of monitoring. The input variables include the pavement thickness, service 
time, average annual daily traffic of trucks and the deformation of the asphalt 
concrete layer, granular base layer and subgrade layer. This experiment used 
440 samples, of which 352 samples (80%) were used for model training and 
88 samples (20%) for testing. The training results of the model reveal that the 
neural network model is significantly better than the multiple linear regression 
model, and the newly built neural network model performs better than another 
similar neural network in predictive performance. For the multiple linear 
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regression model, the correlation coefficient R2 value between the measured 
and predicted in the testing set increased from 0.265 to 0.712. In contrast, it 
promotes from 0.867 to 0.902 for the neural network model.

Keywords: Mechanistic-Empirical Pavement Design Guide (MEPDG), multiple 
linear regression (MLR), neural network, nonlinear factors, overfitting, rutting 
prediction.

Introduction

Rutting is the main distress form of asphalt pavement, and it is also 
a significant criterion to measure the performance of asphalt pavement. 
The design method originated from the Mechanistic-Empirical Pavement 
Design Guide (MEPDG), was funded by the National Cooperative 
Highway Research Program Project (NCRHP) in 1996 and published 
in 2004, representing the most advanced pavement design guide in the 
United States. Because the depth of rutting is an essential criterion for 
measuring pavement performance, the accuracy of its prediction directly 
affects the absolute reliability of pavement design (Gong et al., 2018), 
which must be considered carefully. Prediction accuracy weighs heavily 
on the function of the model form and the data occupied during its 
calibration. Researchers have invested much time and effort in over 20 
performance prediction models in the MEPDG (Schram & Abdelrahman, 
2006). However, just as the viewpoint of Pierce & McGovern (2014), only 
three institutions or organisations indicated that the primary design 
tool for their pavement is MEPDG. A potential reason is that there are 
some disadvantages in using multiple linear regression (MLR) models to 
estimate the occurrence of distress and the service life of the pavement.

Rutting on the pavement comes from the permanent deformations 
(PD) of each structure layer or sub-layer under vehicle load and the 
combination of climate, environment and material factors (Ali et al., 
2017). Of course, as mentioned above, MEPDG linearly combines the 
PD of all sensitive layers when calculating the total rutting. But in 
practice, many factors affect the PD of the pavement, including some that 
maintain an excellent linear relationship with it and other exceptions. 
Therefore, incorporating nonlinear functions solves this problem well 
when considering establishing a suitable pavement model to predict 
distress and improve accuracy.

Artificial intelligence technology, such as neural networks (NN) 
and deep learning, have been widely utilised to establish a model 
for predicting pavement performance. Najafi et al. (2019) applied an 
artificial neural network model to predict the rate of wet and dry vehicle 
crashes based on surface friction, traffic level, and speed limit. Esra’a & 
Abo-Qudais (2018) combined MLR analysis and feed-forward neural 
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network (FNN) to predict Hot Mixture Asphalt (HMA) creep behaviour 
with high accuracy in a short period. Bosurgi et al. (2019) employed 
an artificial neural network to help optimise the evaluation of asphalt 
pavement structural performance based on a multilayer feed-forward 
neural network (MFNN). Li et al. (2020) automatically classified 
pavement cracks by a convolutional neural network (CNN). Neural 
network performs very well in solving nonlinear problems.

Besides predicting pavement distress, NN similarly shows excellent 
estimation power in pavement structure performance (Gong et al., 
2018). For example, researchers used NN to estimate the structural 
performance of the pavement based on roughness data collected 
from modern high-performance survey devices. The results proved 
a correlation between good precision of roughness and structural 
performance (Sollazzo et al., 2017). Simpson et al. (1995) and 
Shafabakhsh et al. (2015) fed several variables that affect rutting into 
the NN, such as asphalt concrete (AC) thickness, base thickness and 
porosity, which successfully predicted rutting depth. Compared to the 
traditional linear regression model, accuracy has been significantly 
improved. However, there are too many variables to be considered, and 
the number of neurons and the depth of the network are inappropriate, 
leading to overfitting problems. On their basis, Gong et al. (2018) 
improved the input variables and the number of network layers, and 
solved the problems caused by overfitting to a certain extent. But the 
network construction failed to carry out the neuron and depth design 
well, making the model performance considered to improve further.

The primary purpose of this research is to build an NN model 
to enhance the accuracy of rutting depth prediction through the 
TensorFlow extension package under the Python programming 
language. At the same time, the scikit-learn extension package is 
also used to realise the establishment of the MLR model and variable 
analysis. The results of the NN model were simultaneously compared to 
the MLR model and the existing NN model. By analysing and reducing the 
pavement performance measurement data collected from various states 
in the United States, two prediction models, MLR-pro and NN-pro, were 
established, and the models were discussed and analysed.

1.	 Rutting depth calculation

1.1.	 Calculation formula

Rutting is a plastic deformation caused by various loads during 
long-term work that has to consider its rate and accumulation. The 
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accumulation rate of plastic deformation is measured in the laboratory 
using repeated load PD triaxial tests for both AC mixtures and unbound 
materials. The laboratory-derived relationship is then adjusted to 
match the rut depth measured on the roadway (American Association 
of State…, 2008). For all AC mixtures, the MEPDG field calibrated form 
of the laboratory-derived relationship from repeated load PD tests is 
shown in Equation (1):
	 �p p r z r
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where Δp(AC) is the accumulated permanent or plastic vertical 
deformation in the AC layer/sublayer, mm; εp(AC) is the accumulated 
permanent or plastic axial strain in the AC layer/sublayer, mm./mm; h(AC) 
is the thickness of the AC layer/sublayer, mm; β1r, β2r, β3r are the local or 
mixture field calibration constants, and for the global calibration, these 
constants were all set to 1.0; kz is the depth confinement factor; k1r, 
k2r, k3r are the global field calibration parameters (k1r = –3.35412, k2r = 
0.47910, k3r = 1.56060); εr(AC) is the resilient or elastic strain calculated 
by the structural response model at the mid-depth of each AC sublayer, 
mm/mm; n is the number of axle-load repetitions; T is the mix or 
pavement temperature, °F; D is the depth below the surface, mm; HAC is 
the total AC thickness, mm.

The Equation (2) shows the field-calibrated mathematical Equation 
used to calculate plastic vertical deformation within all unbound 
pavement sublayers and the foundation or embankment soil (American 
Association of State…, 2008):
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where Δp(soil) is the permanent or plastic deformation for the layer/
sublayer, mm; ks1 is the global calibration coefficients (2.03 − for granular 
materials and 1.35 − for fine-grained materials); εv is the average vertical 
resilient or elastic strain in the layer/sublayer and calculated by the 
structural response model, mm/mm; hsoil is the thickness of the unbound 
layer/sublayer, mm; ε0 is the intercept determined from laboratory 
repeated load permanent deformation tests, mm/mm; εr is the resilient 
strain imposed in laboratory test to obtain material properties ε0, β, 
and ρ, mm/mm; n is the number of axle-load applications; εs1  is the local 
calibration constant for the rutting in the unbound layers (the local 
calibration constant was set to 1.0 for the global calibration effort).
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Calculation parameters β and ρ are determined by Equation (3):
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where Wc is the water content, %; Mr is the resilient modulus of the 
unbound layer or sublayer, kPa; a1 and a9 are the regression constants 
(a1 = 0.15 and a9 = 20.0); b1 and b9 are the regression constants (b1 = 0 
and b9 = 0).

Just like the above formula, it was necessary to calibrate some 
parameters to ensure the best combination. After selecting the 
appropriate value of k2r and k3r from the Equation (1), use the parameter 
minimisation function of the Equation (4) to determine the value of ks1 in 
the Equation (2). The final result of Δtotal is obtained after calculating the 
linear combination utilizing Equation (5) where kij represents different 
calibration coefficients matrix; Δlayers is the plastic deformation value 
matrix of each layer, and both are one-dimensional column vectors.
	 argmin

, , ,k k k kr r r s1 2 3 1

2� �� �� �total actual ,	 (4)

	 � �
total

� kij
T

layers.	 (5)

1.2.	 Regression metric evaluation on calibration

After going through the building steps of the above model, the next 
step is to evaluate the performance of the model. The metrics selected 
this time are the correlation coefficient R2 and the standard error Se. R2 
is also called the coefficient of determination, which defines how many of 
the regression mel predicts future samples (Wang et al., 2021). Besides, 
it also means that the model explains the variance ratio of the predicted 
response variable (Haroon & Clustering, 2017). Its value ranges from 
0 to 1.0, where 1.0 is the best. Se reflects the deviation of the predicted 
value from the observed value. The less the Se, the better the model 
fitting performance. Equation (6) and Equation (7) describe how to 
calculate R2 and Se:



125

Shuzhan Xu,  
Junxin Yang, 
Changbai Wang

An Improved Neural 
Network Model 
for Enhancing 
Rutting Depth 
Prediction

	 R y ŷ
y ŷ

y y
i

n
i i

i

n
i

2 0

1 2

0

1 2
1,

( )

( )

samples

samples

, � �
�

�

�y
n

y
i

n
i

1

0

1

samples

samples ,	 (6)

	 S
y ŷ

ne
i ii

n
( )2

0

1samples

samples
,	 (7)

where ŷi is the estimated target output of the ith sample; yi is the 
corresponding (correct) target output; nsamples is the number of samples.

Table 1 shows the achievements of different organisations or 
individuals in optimizing linear regression models. As in Table  1, only 
the R2 of the American Association of State… (2008), Kaya (2015), 
Mallela et al. (2009a, 2009b), and Schram & Abdelrahman (2010) exceed 
0.5, indicating that most linear models perform poorly. As shown in 
Table 1, when developing a linear regression model to predict the value, 
the impact of nonlinear factors on the target value was ignored. The 
final model was inaccurate, and the R2 deviated from 1.0. Such a model is 
difficult to explain the problem, let alone used to predict rutting.

Table 1. A list is collected from predecessors on rutting calibration

Reference Region R2 Se, mm Samples

American Association of State…(2008) National 0.577 	 2.72 334

Applied Research Associates (2004b) National 0.399 	 3.07 387

Sun et al. (2015) Kansas 0.240 	 0.51 132

Muthadi & Kim (2008) North Carolina 0.340 	 2.82 161

Darter et al. (2014) Arizona 0.181 	 3.12 616

Souliman et al. (2010) Arizona 0.059 	24.60 177

Jadoun & Kim (2012) North Carolina 0.150 	 3.09 235

Schram & Abdelrahman (2010) Nebraska 0.550 	 1.02 398

Smith & Nair (2015) Virginia 0.237 	 1.93 236

Kaya (2015) Iowa 0.630 	 1.27 299

Darter et al.(2009) Utah 0.097 	 3.94 86

Mallela et al. (2009b) Missouri 0.520 	 1.30 183

Mallela et al.(2009a) Ohio 0.630 	 0.36 101

Bennert & Williams (2009) Colorado 0.417 	 3.73 137
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2.	 Artificial neural networks

Inspired by biology, the NN is composed of a series of simple units 
closely related. Each unit has a certain number of real inputs and actual 
individual output (Dayhoff & DeLeo, 2001; Hopfield, 1988). An essential 
use of NN is to accept and process complex inputs from sensors and 
perform adaptive learning. The neural network algorithm simulates a 
biological neural network and is a pattern-matching algorithm usually 
used to solve classification and regression problems.

2.1.	 The framework of the neural network method

This section explains the overall establishment of the NN model for 
estimating pavement rutting using sample data collected by the NCHRP 
and the Federal Highway Administration (FHWA) Long-Term Pavement 
Performance (LTPP). It includes 11 columns of data, such as predicted 
rutting in the pavement structure layers, time of service, original air 
void, and resilient modulus. The data used for training is the most 
original without being modified by algorithms to prevent distress to the 
practicality of the model.

Figure 1, the NN framework consists of four parts:
1.	 the NN architecture;
2.	 data set preparation for preprocessing;
3.	 preprocessing and data set allocation;
4.	 rutting reckoning through deep machine learning.

Figure 1. The overall framework of the neural network method

Data set preparation Data set allocation Deep learning

Eliminate variable data 
with importance scores 
less than zero

Predicted rutting in the 
AC,GB and SG are 
from APPENDIX GG-1

Average Annual Daily 
Truck Traf�ic from LTPP

Training set

Testing set

Converted into 
international units

Standardizing data

FNN training

Preprocessing

Trained FNN

Rutting prediction

Note: *Applied Research Associates (2004a);
	 **Applied Research Associates (2004c)
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In the first step, the NN architecture is designed to be used by 
converting pavement performance parameters (i.e., historical record 
data) into a variable spreadsheet. The second step is to use the actual 
road data provided in the spreadsheet to generate a sample table. 
Before calling the corresponding sample training, it is necessary to 
perform feature standardisation, data cleaning, and feature extraction. 
The purpose is to hope that the value of each feature is obtained after 
the data is processed and float within a low range. In the third step, 
the processed data is divided into data sets, employing one part as the 
training set for model building and the other as the testing set for model 
evaluation. In the last step, use the prepared data set to train the NN 
model and then estimate the rutting depth for the untrained samples.

2.2.	 Proposed neural network architecture

Figure 2 shows the NN system structure used for rutting estimation, 
consisting of some hidden input and an output layer. Every layer of 
communication must add a bias. The input layer is the pavement 
performance data read from the variable spreadsheet, and then the data 
is passed to the first hidden layer through feature transformation. The 
first hidden layer is passed to the second hidden layer through feature 
transformation, and so on, until all the hidden layers are traversed. This 
process is also called forward propagation. A regularisation penalty 
must be introduced during forwarding propagation to prevent the model 
from overfitting. Finally, the results of the NN are output through the 
output layer.

Figure 2. Baseline network architecture Figure 3. Model overfitting
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2.3.	 Standardisation and regularisation

Since the different attributes of the sample, this time, has different 
magnitudes, to eliminate the extent of influence, the data needs to be 
standardised so that the characteristics of the sample are scaled to a 
specified range. The Equation (8) shows the standardised formula:

	 Z
X X
std X

�
�

� �
mean ,	 (8)

where Z is the standardised data; X is the original data; Xmean is the mean 
of the original data; std(X) is the standard deviation of the original data.

As shown in Figure 3, overfitting refers to the phenomenon that the 
model positively fits the data set, causing the model to fail to output 
high-precision predictions for untrained data. It happens when the 
features transformed from the original data are fed to the NN, and the 
network fits the noisy data by remembering these features instead of 
learning them (Dietterich, 1995; Jeong et al., 2020). Overfitting models 
have low bias and high variance and lack the generalisation of untrained 
data sets, resulting in inaccurate predictions (Jeong et al., 2020). 
Regularisation is to scale a particular sample norm to unit one and select 
weight parameters with stronger generalisation ability. That is, all tend 
to be stable. Usually, the L2 regularisation is chosen as in Equation (9), 
which takes the square sum of the weight parameters and penalises it 
more strongly.
	 J J w wT� �0 � ,	 (9)
where J is a regularised loss function; J0 is the sum of squared error 
between actual values and prediction; α is the penalty coefficient; w is 
the weight vector.

2.4.	 Activation function

In the NN architecture, after inputting the data, the features are 
transformed ler by layer, and finally, the error is evaluated through 
the loss function, forward propagation. Next, choose an appropriate 
optimisation method, load backpropagation, go from back to front, 
and update the weight parameters layer by layer. If there is a linear 
transformation among layers, then only one set of weight parameters 
is needed to represent all the remaining products. This single group of 
weight parameters is impossible to explain practical principles. On the 
one hand, the NN must solve linear and nonlinear problems (Hopfield, 
1988); on the other hand, it needs to filter the transformed features 
so that the valuable weight features play a more significant role in the 
activation function.



129

Shuzhan Xu,  
Junxin Yang, 
Changbai Wang

An Improved Neural 
Network Model 
for Enhancing 
Rutting Depth 
Prediction

Common activation functions include the sigmoid function and 
rectified linear unit (ReLu) function (Ramachandran et al., 2017). 
As shown in Figure 4, a derivation is required layer by layer in the 
backpropagation process. The sigmoid derivative of the function is close 
to zero when the value is significant. Since backpropagation is carried 
out layer by layer, if the gradient of a layer is zero, all the network layers 
behind it are updated restrictedly (Wang et al., 2022), which is also the 
biggest problem with the sigmoid function (Bengio et al., 1994).

The ReLu function is a continuous piecewise function consisting 
of two parts. The value of the function on the negative semi-axis of x 
is all zero, and the function expression on the positive semi-axis of x is 
y x= . The gradient is kept active by preventing gradient saturation and 
providing better calculations through linear operations. For the input x, 
the output is zero when it is less than zero, and when it is higher than 
zero, the output is equal to the input itself. It is also a nonlinear function, 
but it solves the problem of the disappearance of the gradient, and the 
calculation is straightforward, speeding up the iteration speed of the 
network.

2.5.	 Optimizing with adaptive moment estimation

The predicted value of the regression equation and the actual value 
of the sub-sample are common unequal, indicating a difference between 
the actual value of the data and the predicted value, usually called 
an error term. The objective function, introduced in Equation (10), is 
considered optimizing to reduce the error value. Equation (10) calculates 
the extreme value of its partial derivative to obtain the lowest parameter 
θ. Therefore, the extreme value is found as long as the appropriate 
learning rate is selected and the gradient is calculated. This process is 

Figure 4. Activation function Figure 5. Adam visualisation

Adam Optimizer

yi = xi

yi = 0

y y
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also called the gradient descent algorithm. The batch gradient descent 
algorithm requires consideration of all sample data. Every iteration of 
the optimisation calculation needs to calculate all the samples in the 
formula. Still, the iteration speed considers being plodding if the number 
of samples is huge. Facts have proved that the Stochastic Gradient 
Descent (SGD) algorithm is an effective optimisation tool and is essential 
in many successful machine learning cases (such as advanced deep 
learning technologies) (Deng et al., 2013; Kingma & Ba, 2014). It uses 
only one sample simultaneously, dramatically improving the iteration 
speed. However, SGD also has the following problems:

1.	 difficulty selecting a suitable starting learning rate;
2.	 the pre-specified adjustment rules limit the learning rate 

adjustment strategy;
3.	 the same learning rate is applied to each parameter;
4.	 the optimisation process of the highly non-convex error function 

tends to fall into many local sub-optimal solutions or saddle 
points.

	 J
m

h x yi i

i

m

� �� � � � � �� �� � � �

�
�1

2

2

1

,	 (10)

where m is the number of samples in the entire data set; hθ(x(i)) is the 
regression equation; y(i) is the actual value.

For the problems of simple SGD, Duchi et al. (2011) released the 
adaptive gradient (AdaGrad) optimisation algorithm that adjust 
different learning rates for each parameter and use lower parameters 
for frequently changing parameters. The step size is updated, and the 
sparse parameter is updated with a larger step size. But the main flaw 
comes from the continuous accumulation of the square of the gradient 
in the denominator term, and the time step increases. The denominator 
term becomes larger and larger, which eventually causes the learning 
rate to shrink to too low to be effectively updated. Root mean square 
prop (RMSProp) is an algorithm mentioned by Hinton et al. (2012) in 
their teaching plan that adjusts the learning rate by combining the 
exponential moving average of the gradient square to deal with the 
problem of non-convergence caused by the stable (non-stationary) 
objective function.

Two scholars, Kingma & Ba (2014), proposed the adaptive moment 
estimation (Adam) optimiser in 2014, as shown in Figure 5, combining 
the advantages of AdaGrad and RMSProp optimisation algorithms. 
Based on the AdaGrad and RMSProp algorithms, Adam calculates the 
update step size by comprehensively considering the first-moment 
estimate (average of the gradient) and the second-moment estimate 
(the uncentered variance of the gradient). Adam is considered to be 
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an optimiser with better default performance in many cases, mainly 
including the following significant advantages:

1.	 weakening the influence of parameter update by the gradient 
transformation;

2.	 very few adjustments are required to ensure that the 
hyperparameters have good interpretability;

3.	 the step size is limited to a specific range (initial learning rate);
4.	 suitable for scenarios with large amounts of data or parameters;
5.	 solving the unstable target function problem is excellent;
6.	 assisting in solving the problem of gradient sparsity or gradient 

with considerable noise.

3.	 Data acquisition and input

Plentiful and reliable data sets are essential for a successful 
supervised learning approach. However, obtaining a large amount of 
high-quality labelled data is difficult in practice but feeding such data 
into the neural network is crucial to the training effect of the model. 
In this NN training, historical monitoring data collected from the 
LTPP database of a total of 88 sites in 28 states were used to improve 
the reliability of the model training results. These data are currently 
available in the two reports issued by NCHRP Project 01-37A, Appendix 
GG-1 (Applied Research Associates, 2004a) and Appendix EE-1 (Applied 
Research Associates, 2004c). Other traffic data are accessed directly by 
visiting the LTPP InfoPave website (https://infopave.fhwa.dot.gov/). 
Figure 6 shows the source of these data.

The data extracted from Appendix EE-1 (Applied Research 
Associates, 2004c) and Appendix GG-1 (Applied Research Associates, 
2004a) are listed in Table 2 and Note.

Table 3, including ten columns of values of the feature, such as the 
rutting of AC, granular base (GB) and subgrade (SG) layers, and a column 
of target values representing the actual rutting depth. The selection and 
sources of specific variables are listed in Table 4.
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Table 2. Part of the data from Table C-58 in Appendix EE-1*

Section Month Time,
hours

Predicted Measured

AC GB SG Total AC, 
%

GB, 
%

SG, 
%

AC GB SG Total

11 001 4/5/1989 103 0.434 0.176 0.12 0.730 59.47 24.13 16.40 0.199 0.081 0.055 0.335

11 001 2/12/1991 125 0.485 0.180 0.122 0.787 61.62 22.82 15.56 0.194 0.072 0.049 0.315

11 001 4/2/1992 139 0.501 0.181 0.124 0.806 62.18 22.46 15.36 0.184 0.066 0.045 0.295

11 019 5/15/1989 32 0.140 0.025 0.135 0.300 46.73 8.26 45.00 0.239 0.042 0.230 0.512

11 019 4/16/1990 43 0.164 0.026 0.140 0.329 49.79 7.78 42.43 0.274 0.043 0.234 0.551

11 019 1/15/1991 52 0.186 0.026 0.143 0.355 52.29 7.40 40.31 0.288 0.041 0.222 0.551

11 019 3/31/1992 66 0.201 0.027 0.146 0.374 53.72 7.11 39.17 0.296 0.039 0.216 0.551

11 019 3/22/1994 90 0.232 0.031 0.151 0.414 56.00 7.43 36.57 0.331 0.044 0.216 0.591

11 019 1/8/1996 112 0.260 0.034 0.155 0.449 57.89 7.52 34.58 0.342 0.044 0.204 0.591

11 019 1/23/1998 136 0.280 0.034 0.158 0.472 59.28 7.23 33.50 0.420 0.051 0.237 0.709

Note: *Applied Research Associates (2004c).
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Table 3. Part of the data from Table 4 in Appendix GG-1*

Section Number
of layers

Layer 
number

Layer 
type

Representative 
thickness, mm Comments

11 001 5

1 AC 40.64 AC surface layer combined with AC layer 
beneath

2 AC 40.64

3 GB 157.48

4 GS 485.14

5 SS BR above 1.524 m (USGS-Regional)

11 019 6

1 AC 27.94 LTPP data shows 0.9”

2 AC 66.04

3 AC 76.20

4 GB 139.70

5 SS 6400.80

6 BR BR above 6.400 m  
(Harold Von Quintus Report)

Note: *Applied Research Associates (2004a).

Table 4. Explanation of input variables

Variable Explanation Source

AC_pre Rutting expected with AC Appendix GG-1* 

GB_pre Rutting expected with GB Appendix GG-1*

SG_pre Rutting expected with SG Appendix GG-1*

Time Service time Appendix GG-1*

h_Tot The total thickness of pavement layers Appendix EE-1**

h_AC AC layer thickness Appendix EE-1**

h_GB GB layer thickness Appendix EE-1**

MR_SG SG layer resilient modulus Appendix EE-1**

MR_GB GB layer resilient modulus Appendix EE-1**

Voids Original air voids in AC Appendix EE-1**

AADTtruks Average annual daily trucks traffic LTPP

Note: *Applied Research Associates (2004a); **Applied Research Associates 
(2004c)
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4.	 Neural network model construction

Four hundred forty data set samples were used to develop the 
rutting prediction model. For the NN training process, 352 samples were 
randomly selected (80% of the data). In comparison, for the NN testing 
processes, the remaining 88 samples (20% of the data) were divided 
equally (Esra’a & Abo-Qudais, 2018). This neural network is called 
NN-pro. Because of the limited sample data, it is very wasteful to set up 
the validation set separately. To fully use all the existing data, the cross-
validation method in machine learning has been introduced that divides 
the training set into multiple parts. After numerous attempts, four-
fold cross-validation is finally used, as shown in Figure 7. The process 
must be divided into four steps when verifying a particular result. In 
the first step, use the first three as the training set and the last as the 
validation set to get a result. By analogy, each time uses another copy 
as the validation set and the rest as the training set. After four steps, 
four results are obtained, each corresponding to each small part, and 
the combination contains all the data in the original training set. Then 
the final four results are averaged to obtain the final model evaluation 
result. Cross-validation plays a significant role in evaluating the model 
and making the results more accurate.

When configuring the network, the appropriate hyperparameters, 
such as the number of layers, the number of neurons in each layer, 
learning rate, batch and epoch, need to be determined. Different 
hyperparameters have different effects on the model. Regularisation 
parameters, the number of layers of the neural network, and the 
number of neurons mainly affect the classification accuracy of the 
neural network; learning rate and activation function primarily 

Figure 7. Cross-validation
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affect the learning speed (Huang et al., 2004). To build the best model 
configuration, try to find the optimal number of hidden layers and 
neurons from one to five, and finally exploit a random search to 
determine the best model (Bergstra & Bengio, 2012; Huang et al., 2004, 
2006; Pao et al., 1994). The specific structure of the NN-pro and the 
selection of hyperparameters are shown in Table 5.

Figure 8 shows how the error generated during model training 
decreases with the accumulation of iterations. The results show that the 
standard error of the network dramatically decreases as the learning 
process deepens. When the error value stops changing, the entire model 
training ends. The results show that after about 2000 iterations, the 
error generated by the model stabilises, and the standard error in the 
training set is only 1.034, implying that NN performs well in predicting 
rutting depth.

Table 5. Neural network-pro configuration and hyperparameter selection

Layer IL HL1 HL2 HL3 HL4 OL

Neurons 10 100 50 20 10 1

Activation function ReLu ReLu ReLu ReLu ReLu −

Regularisation penalty − L2 L2 L2 L2 −

Learning rate − 0.001 0.001 0.001 0.001 −

Note: IL − input layer; HL − hidden layer; OL − output layer.

Figure 8. Rutting neural network performance plot
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5.	 Results and analysis

As illustrated in Equation (5), the rutting depth calculation method 
given by MEPDG is to calculate the PD from the AC layer, GB layer, and 
SG layer, integrating the deformation of all layers through a linear 
combination equivalent to fitting ten zero-intercept rutting feature 
variables to the MLR model (Gong et al., 2018). Consequently, to better 
evaluate the performance of the NN, it is important to build a multiple 
linear regression model MLR-pro with the same input variables 
compared to the two types of models. Of course, the MLR-pro model is 
also compared to the models MLR20 and NN20 established by Gong et 
al. (2018) to show the performance of model optimisation and choose R2 
and Se as evaluation indicators.

Figure 10. Measured and predicted rutting of MLR-pro
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Figure 9. Measured and predicted rutting of MLR20
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Figure 11. Measured and predicted rutting of NN20

5.1.	 Multiple linear regression model

Figure 9 and Figure 10 show the actual and predicted rutting from 
MLR20 and MLR-pro. R2 and Se in training set with 352 sample data 
increased by 123.5% and decreased by 47.8%, respectively. In a total of 
88 sample data from the testing set, the R2 and Se in the MLR20 model 
are 0.265 and 3.09  mm, respectively. The MLR-pro showed R2 equal 
to 0.712 and Se equal to 1.798  mm. The results show that compared 
to MLR20, the R2 of MLR-pro has increased by 168%, and the Se has 
decreased by 41.8%.

5.2.	 Neural network model

Figure 11 and Figure 12 show the actual performance of the NN20 
and NN-pro models. For the NN20 model, R2 and Se in the training set 

Figure 12. Measured and predicted rutting of NN-pro
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are 0.899 and 1.402  mm, respectively, and R2 and Se in the testing set 
are 0.867 and 1.403  mm, respectively. R2 and Se in the training set and 
testing set of the NN-pro model are 0.929 and 1.034  mm, and 0.902 
and 1.050  mm, respectively. After testing, the R2 of NN-pro is 3% and 
4% higher than that of NN20 in the training and testing set, and the Se 
are reduced by 26% and 25%. Compared to the MLR-pro model, the R2 
increased by 26.7%, and the Se decreased by 41.6% in the testing set. 
Similarly, the R2 has exceeded 0.9 by NN-pro, which means that more 
than 90% of the samples are generally in line with the prediction of this 
model, implying that NN-pro has good generalisation ability. The specific 
data comparison is listed in Table 6.

5.3.	 Model analysis

Choosing the correct variables to feed the NN is also very important 
because the NN model is prone to overfitting. When the input features 
of the NN are too many, the dimension is too large, making the model 
excellent performance on the training set but unsatisfactory on the 
testing set. NN-pro optimises the input variables based on NN20, selects 
ten variables to feed neurons, and combines Adam to optimise the 
loss function so that the residual of the model is significantly reduced. 
Although ten input variables are used in this model, their status is 
unequal, and their impact on the entire model varies in importance. 
Using the random forest algorithm in ensemble learning makes it 
easy to get the degree of the determinism of different variables in the 
model. Figure 13 depicts the importance of different variables to the 
results. The main influences on the rut depth are the PD of the AC layer 

Table 6. Model performance

Model Number of data sets R2 Se, mm

MLR20
Training 352 0.327 3.020

Testing 88 0.265 3.090

MLR-pro
Training 352 0.731 1.576

Testing 88 0.712 1.798

NN20
Training 352 0.899 1.402

Testing 88 0.867 1.403

NN-pro
Training 352 0.929 1.034

Testing 88 0.902 1.050
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and AADTtruks because the surface layer is directly loaded, and the 
pavement mechanism undergoes cumulative plastic deformation under 
the repeated rolling action of the vehicle. Deformation of the GB layer 
plays a more critical role in developing rutting. For this kind of pavement 
structure composed of loose materials, slip and displacement occur 
among particles, causing it to lose bearing capacity and trigger distress.

In summary, NN is much better than MLR in terms of rutting model 
prediction performance and has good generalisation performance. 
The difference between the models is essentially the selection of 
different weights and biases, which means that the final result of 
the model is entirely determined by the weight and bias parameters. 
Multiple linear regression is a vital algorithm in machine learning, and 
the predictive ability of the model is also relatively strong. However, 
linear correlations among variables and nonlinear influencing factors 
are common in practical applications. The activation function in NN 
achieves this function. The input-to-loss calculation process is completed 
through forwarding propagation, optimised parameters through 
backpropagation, and a suitable weight or bias is obtained. The original 
perception is that the output of each layer and the input of the previous 
layer constitute a linear function. Even if the number of NN layers 
increases, the output is a linear combination of the input. However, 
suppose an activation function that coordinates nonlinear factors 
is introduced. In that case, there are both linear connections among 
neurons and nonlinear connections, so such NN applies to any nonlinear 
function or model. Figure 14 plots the correlation analysis between the 
first three variables with more significant influence and the actual value 
of the rutting. The results show that although the depth of the rutting 
does increase with the increase of the independent variable, it is hard to 
explain the relationship among them with a linear relationship, so this is 
also the necessity of introducing nonlinear factors.

However, the proposed NN model still has some shortcomings. The 
sample points near the centerline are a little sparse, especially on the 
test set, limiting the model from reaching a higher level of prediction. 
The main reason for this problem is insufficient training sample data 
sets, only 440 groups. In the future, high-performance test equipment 
will be considered available to collect more accurate road performance 
data and expand the data set to develop the potential of the model.
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Figure 14. A plot matrix for the variables considered
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Conclusions

This paper carefully analyses and discusses the construction of 
artificial neural networks and how to use a neural network model 
to estimate the depth of rutting of asphalt pavement structure 
performance. By considering relevant impact factors, the input variables 
of the neural network model are controlled to maximise the accuracy 
and reliability of the final result. Also, the hyperparameters of the neural 
network model are adjusted in detail to optimise the accuracy of the 
network model. The collected data comes from the two final reports of 
the National Cooperative Highway Research Program Project 01-37A 
and the data downloaded from the Long-Term Pavement Performance 
InfoPave website. They are based on reliable data accumulated over 
many observations, making the model very convincing. The following 
conclusions are drawn through the analysis and discussion of the results.

1.  This model is built on continuous data learning through deep 
learning algorithms in artificial intelligence to calibrate the rutting 
calculation function locally that accurately predicts the rutting 
distress of the asphalt pavement. It provides a reference for obtaining 
pavement distress information and facilitates more specific periodic 
measurements and road maintenance.

2.  When using the multiple linear regression model MLR-pro to 
predict rut depth, compared to MLR20, in the testing set, the correlation 
coefficient R2 of MLR-pro has increased by 168%, and the standard error 
Se has decreased by 41.8%. The main reason is that the control of input 
variables in the model effectively prevents the occurrence of overfitting.

3. Using the same neural network (NN) model, compared to the MLR-
pro model, the correlation coefficient R2 increased by 26.7%, and the 
standard error Se decreased by 41.6% in the testing set. By changing 
different network structures and reducing input variables, in the testing 
set, the correlation coefficient R2 of NN-pro is 4% higher than that of 
NN20, and the standard error Se is reduced by 25%. The correlation 
coefficient R2 of NN-pro has exceeded 0.9 by NN-pro, indicating that 
NN-pro has good generalisation ability.

4. The correlation analysis among the variables reveals that different 
variables have different degrees of influence on the model, and some 
variables show a nonlinear relationship. These results also confirm the 
previous conjecture that a single linear transmission cannot explain 
more deeply and comprehensive data.

Overall, the neural network model is better than the multiple linear 
regression model in all aspects. The reason is that the relationship 
transmitted by the neural network model in the training process 
contains linear and nonlinear so that it can fit the model better. The 
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outstanding performance of the neural network model optimises 
the asphalt pavement design. It promotes the development of precise 
and intelligent road maintenance that helps improve the method of 
the Mechanistic-Empirical Pavement Design Guide. In the future, it is 
recommended to use high-performance test equipment to collect more 
accurate road performance data and expand the data set to develop the 
potential of the model.
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