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Abstract. A modified deflection theory is developed for preliminary design 
of self-anchored suspension bridges. The proposed theory modifies the 
questionable approach of the existing theory considering the initial fabrication 
camber and overcomes the limitation that the hangers are assumed inextensible, 
which results in a stiffer bridge system and thus underestimation of the main 
cable and girder deflections. In addition, in order to avoid the inconvenience 
of solving a system of nonlinear equations iteratively for the preliminary 
design, the tower flexural stiffness is neglected rationally to obtain a system 
of linear equations only. With the aid of all force equilibrium and deformation 
compatibility conditions for the entire bridge system, the modified deflection 
theory is formulated. Its solution procedure is presented, which leads to a 
complicated sixth-order variable-coefficient ordinary differential equation, 
and a practical approximate solution to the equation is sought. To verify the 
proposed theory, a bridge example is investigated, and the results are compared 
to those from the previous deflection theory and complex finite element 
analysis. The comparisons demonstrate the effectiveness of the modified 
deflection theory.
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Introduction

Self-anchored suspension bridges (Ochsendorf and Billington, 
1999) are particularly suitable for places where there are insufficient 
conditions for earth anchorages. Their main cables are secured directly 
to each end of the main girder. As a result, the main girder carries a 
compressive force transferred from the horizontal component of the 
cable tension, and live loads cause not only bending but also additional 
compression in the main girder. Taking this compression effect into 
account appropriately to avoid buckling instability of the main girder is 
of significance. Also, determinations of the additional compressive force, 
maximum vertical displacement and maximum bending moment in the 
main girder are of importance for preliminary design of the bridges.

Several theories (Buonopane and Billington, 1993), such as the 
Rankine’s theory (only the main girder included) and elastic theory 
(the cable stiffness further considered), have been developed for the 
preliminary design of the conventional earth-anchored suspension 
bridge. Among them, the deflection theory (the vertical deflection of 
the cable further involved) is believed as the most sophisticated one so 
far. However, compared to numerous studies on the conventional earth-
anchored suspension bridge based on the deflection theory (Jennings, 
1987; Ulstrup, 1993; Clemente et al., 2000; Cobo del Arco and Aparicio, 
2001; Wollmann, 2001; Choi et al., 2013; Shin et al., 2015; Gwon and 
Choi, 2018; Li and Liu, 2021; Zhang et al., 2021; Zhang et al., 2022), very 
little analytical attention has been paid to the self-anchored suspension 
bridge. Until 2015, Jung et al. (2015) just derived a deflection theory for 
the self-anchored suspension bridge considering the initial fabrication 
camber and tower flexural stiffness. Based on this theory, they further 
investigated the elastic stability behaviour of the bridge (Jung et al., 
2017). On the other hand, a few numerical analyses (Kim et al., 2002; 
Kim et al., 2006; Romeijn et al., 2008; Han et al., 2009; Kim and Kim, 
2012; Sun et al., 2015; Kim et al., 2019; Zhuang et al., 2021; Chen et al., 
2022), mainly based on the finite element method (FEM), have been 
conducted for the self-anchored suspension bridge, but they are too 
demanding for the preliminary design.

In the deflection theory by Jung et al. (2015), the consideration of 
the initial camber is questionable. They introduced a girder deflection 
function, in addition to the initial camber, into the equilibrium equation 
of the main girder under dead loads (Equation (2) in the reference) but 
the initial camber was not included in the term of the second-order 
differentiation, rendering the initial cable geometry related to the initial 
camber (Equations (4b) and (5) in the reference) and the final deflection 
equation (Equation (9b) in the reference) not relevant to the whole 
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initial camber function but only relevant to the camber values at the 
centre and ends of the span, through the horizontal tension of the main 
cable (Equation (6b) in the reference). This contradicts the conclusion 
that both the initial cable geometry and the horizontal tension of the 
main cable under the dead loads are irrelevant to the initial camber, 
derived from the equilibrium equation of the main cable under the dead 
loads (Equation (1) in the reference) with the assumption that the dead 
loads are uniformly distributed and carried by the main cable. One 
obvious evidence is that plugging the cable geometry (Equation (4b) 
in the reference) back into the equilibrium equation of the main cable 
(Equation (1) in the reference) arrives at not only the total dead loads but 
also an additional term related to the initial camber, which violates the 
assumption.

In addition, an unrealistic assumption has been made in the previous 
deflection theory, i.e. the hangers are inextensible. In this case, the 
deflection of the main girder is always the same as that of the main cable. 
This does not obey the truth that the hangers can be further elongated 
due to the hanger tension increment caused by live loads. Actually, 
this model simplification uses a rigid hanger hypothesis and results 
in a stiffer bridge system. Underestimation of the bridge deflection is 
anticipated.

Furthermore, the previous deflection theory considered the tower 
flexural stiffness explicitly by employing an equivalent horizontal 
spring at the tower top. This reflected the horizontal cable tension 
difference between two adjacent spans and might improve the accuracy 
of the design results. However, it was not mentioned how the value of 
the spring stiffness was determined, the consideration led to a system 
of nonlinear equations and the Newton-Raphson iteration method was 
required for solving the equations, which was inconvenient for the 
preliminary design. According to the cantilever beam-column theory 
(Timoshenko, 1947), when the compressive load applied to the top of 
the tower increases, the tower flexural stiffness reduces. Therefore, the 
enforcement of live loads, which increases the compression in the tower, 
will lower the tower flexural stiffness and in turn lower the cable tension 
difference. This point is also proved in the reference (Jung et al., 2015). 
As the live load is amplified by 10 times, the cable tension difference 
reduces from 3.9% to 0.8%, which is negligible.

In this paper, therefore, a modified deflection theory is to be 
proposed. It aims at the following three targets: considering the initial 
camber appropriately; considering the hanger extension realistically; 
and developing an easy-to-apply procedure for the preliminary design, 
without solving the complex nonlinear equations, by neglecting the 
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tower flexural stiffness. The verification of the modified deflection 
theory will be examined carefully.

The remainder of this paper is organized as follows. First, in 
Section 1, the bridge model for analysis is developed and the employed 
assumptions are summarised. Then in Section 2, the modified deflection 
theory is formulated. Its solution procedure is presented in Section 3. In 
Section 4, comparisons of the solutions between the modified deflection 
theory and the previous one are made by an example design. Finally, 
some conclusions are drawn.

1.	 Bridge model and assumptions

Figure  1 shows the idealized plane model for the self-anchored 
suspension bridge. It is a typical three-span suspension bridge 
consisting of two towers, one continuous main girder, one main cable, 
and a series of hangers. The main cable is anchored at both ends of the 
main girder and the main girder is supported at the two towers and the 
two ends. The supports are rollers except for a hinged support at the left 
tower. The black solid lines denote the initial configuration of the bridge 
under dead loads considering the initial fabrication camber w0, and the 
red dashed lines denote the deformed configuration of the bridge after 
the application of live loads.

In order to derive the modified deflection theory, the following 
reasonable assumptions are made:

1.	 The dead loads of the main girder, main cable and hangers are all 
uniformly distributed, and the main girder is at a zero-flexural 
stress state under the dead loads. Consequently, all the dead loads 
are carried by the main cable eventually;

2.	 The hangers are vertical under the dead loads and remain vertical 
under the live loads;

3.	 The materials of the bridge remain linear elastic under the live 
loads;

Figure 1. A typical three-span self-anchored suspension bridge model



171

Minmao Liao,  
Huaili Peng

Modified 
Deflection Theory 
for Preliminary 
Design of Self-
Anchored 
Suspension Bridges

4.	 The cross section and elastic modulus of the main girder are 
constant along the bridge spans;

5.	 The tower flexural stiffness is neglected, as discussed earlier.

2.	 Modified deflection theory

The entire bridge system can be decomposed into two subsystems: 
the main cable and the main girder. Their sectional free body diagrams, 
as well as those of the hanger, under both the dead loads and the dead 
and live loads are shown in Figure  2, where wg, wc and wh denote the 
uniformly distributed self-weights of the main girder, main cable and 
hangers, respectively, and qd = wg + wc + wh is the total dead load per unit 
length. According to Assumption (1), the main girder is at a zero-flexural 
stress state under the dead loads, so the tension at the bottom of the 
hanger is Thb = wg, and in turn the tension at the top of the hanger is Tht = 
wg + wh. After the live load ql(x) is applied to the main girder, the hanger 
tension is increased by qh(x). Now the fundamental equations of the main 
cable and the main girder are formulated as follows.

Figure 2. Free body diagrams of main cable, main girder and hanger

Main cable

Hanger

Main girder

Dead loads Dead + live loads

dl
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2.1.	 Main cable

With Assumption (1) and the parabolic cable theory (Irvine, 1981), the 
equilibrium equation of the main cable under the dead loads is given by
	 � �� �H y qd d ,	 (1)
where Hd is the horizontal component of the cable tension under the 
dead loads and y is the cable profile under the dead loads with positive 
direction downwards. The superscript ′ denotes differentiation with 
respect to the horizontal ordinate xi (i = 1, 2, 3), as shown in Figure 1.

Considering the cable geometry:
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where h is the tower height above the main girder, L1, L2 and L3 are 
the span lengths of each span, respectively, and f1, f2 and f3 are the sag 
lengths of each span, respectively, the horizontal cable force under the 
dead loads is

	 H
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.	 (5)

After the live load is applied to the main girder, the hanger tension is 
increased by qh(x). Thus, the equilibrium equation of the main cable is

	 � �� � �� � � � � ��� ��H H y v q q x
d l d h

,	 (6)

where Hl is the additional horizontal cable force due to the live load and 
v is the vertical deflection of the cable under the live load with positive 
direction downwards, as shown in Figure 1.

2.2.	 Main girder

According to Assumption  (1), the main girder is at a zero-flexural 
stress state under the dead loads. Based on the classical beam-column 
theory (Timoshenko, 1947), its equilibrium equation considering the 
initial fabrication camber w0(x) is given by

	 E I H w T ww
g g d hb g

����� �� � � �
0 0

0,	 (7)

where Eg and Ig are the elastic modulus and area moment of inertia of 
the main girder, respectively, and w0 is positive in the upward direction. 
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The term H w
d

′′
0
 stems from the contribution of the compression in the 

main girder, and it is the major difference between the self- and earth-
anchored suspension bridges.

Then the live load ql(x) is applied, and the equilibrium equation of the 
main girder is similarly given by

	 E I w w H H w w q x w T q x
g g d l l g hb h

�� � � �� � �� � � � � � � � � �0 0
²² ² ,	 (8)

where w is the vertical deflection of the main girder under the live load 
with positive direction downwards, as shown in Figure 1.

Eliminating wg − Thb from Equations (7) and (8) leads to

	 E I w H H w q x q x H w
g g d l l h l

���� � �� � � � � � � � � ����
0
.	 (9)

The last term in the equation reflects the effects of the initial camber.

2.3.	 Deformation compatibility

There are two deformation compatibility conditions under the live 
load. First, the vertical deflection of the main girder, w, is equal to that of 
the main cable, v, plus the hanger extension Lhl − Lhd where Lhd = h – y − w0 
is the hanger length under the dead loads and Lhl is the hanger length 
after the extension due to the live load, as illustrated in Figure 1. Second, 
the horizontal projection of the change in cable length is equal to the 
shortening of the main girder. They are examined respectively in the 
following subsections.

2.3.1.	 First deformation compatibility condition

The free length of the hanger without any tension is assumed to be 
Lh(x). Under the dead loads, the free body diagram of an infinitesimal 
length of the hanger with a distance l to the hanger bottom is also shown 
in Figure 2. The extension of the infinitesimal length is given by

	
w w l L

E A
lg h h

h h

+ /
d ,	

where Eh and Ah are the elastic modulus and cross-sectional area of the 
hanger, respectively. Then the total length of the hanger is
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Similarly, after the live load is applied, the total length of the hanger is

	 L L
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g h h
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Therefore, the first deformation compatibility condition can be 
expressed as

	 v w L L w
q x h y w
E A w w
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2/
.	 (12)

2.3.2.	 Second deformation compatibility condition

The horizontal projection of the elongation in an infinitesimal cable 
length under the live load is given by (Irvine, 1981)

	 d d d du
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where Ec and Ac are the elastic modulus and cross-sectional area of the 
main cable, respectively.

Integrating the above equation over each span length and using 
the integration by parts and Equation  (1), the second deformation 
compatibility condition is written as
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where Ag is the cross-sectional area of the main girder. The second 
term on the right-hand side of the equation accounts for the additional 
shortening of the main girder due to its deflection. Note that when the 
total horizontal change of the cable length in the three spans, instead of 
the change in each span, is expressed, the contribution of the horizontal 
displacements at the tower tops is readily cancelled out.

3.	 Solution of the modified deflection theory

Combining Equations (6), (9), (12) and (14), there are four unknowns, 
i.e., Hl, qh(x), v, and w, in the four equations. They should be solvable, as 
illustrated subsequently, with appropriate boundary conditions.
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First, adding Equations (6) and (9) and using Equation (1) by 
eliminating qh(x) and y′′ yield

	 E I w H H w v q x
H
H

q H w
g g d l l

l

d

d l
���� � �� � �� � � � � � � ��²

0
.	 (15)

Note that if the hanger extension is neglected, i.e., w = v, Equation (15) is 
reduced to

	 E I w q x
H
H

q H w
g g l

l

d

d l
���� � � � � � ��

0
,	 (16)

which has a similar form to Equation  (9b) in the reference (Jung et al., 
2015) except that now the horizontal cable tension under the dead 
loads, Hd, is irrelevant to the initial camber and the equation is related 
to the whole camber function by the additional last term. Since in 
practice the live loads are generally uniform and the initial camber is at 
most parabolic, the right-hand side of Equation  (16) is constant and its 
solution is given by

	 w A x B x Cx D
H q H q H H

E I H
x
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6 2 24

3 2 40d l l d d l

g g d
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where A, B, C and D are constants determined by the boundary 
conditions. It is known from Equation (17) that the deflection of the main 
cable and girder is a fourth-order polynomial when the hanger extension 
is not considered. Afterwards, the hanger tension increment qh(x) in this 
case can be extracted from Equation (6) or (9) and the bending moment 
of the main girder is obtained by integrating Equation (16) twice, i.e. 
M(x) = −EgIgw′′.

On the other hand, if the hanger extension is considered, then from 
Equation (12),

	 �� ��
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Substituting Equation (18) into Equation (15) yields
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Using Equation (9) again by eliminating qh(x), a sixth-order variable-
coefficient ordinary differential equation of w with respect to x is 
obtained as follows:
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, (20)

where the superscripts “VI” and “V” denote the sixth- and fifth-order 
differentiation, respectively.

The equation above is a complicated variable-coefficient differential 
equation whose exact analytical solution is difficult to attain. It can 
be solved numerically, but that is still demanding for the preliminary 
design. Fortunately, inspired by Equation  (17) that the deflection of 
the main girder should be close to a fourth-order polynomial even the 
hanger extension is considered, we are able to seek an approximate 
solution here by omitting the sixth- and fifth-order differentiation 
terms in Equation (20). Also, by knowing that in practice the live loads 
are generally uniform and the initial camber is at most parabolic and by 
introducing z = w′′, Equation (20) is reduced to a second-order variable-
coefficient differential equation as follows:

(21)

The analytical solution to Equation (21) is available. Assuming that 
the cable geometry and initial camber are expressed as the following 
forms:
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the solution to Equation (21) is written as
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Integrating Equation (22) twice, the deflection of the main girder is 
obtained by
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Equation (30) is the practical approximate solution sought for the 
main girder deflection. The constants A, B, C and D can be determined by 
the boundary conditions of the continuous main girder. For instance, for 
a fully uniform live load in each span, the twelve constants Ai, Bi, Ci and Di 
(i = 1, 2, 3) are determined by the following twelve boundary conditions:
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Subsequently, substituting Equation (30) into Equation (9) yields the 
hanger tension increment qh(x) as follows:
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Therefore, the deflection of the main cable v is obtained by 
Equation (12). The second term on the right-hand side of Equation (12) 
reflects the deflection difference between the main cable and the main 
girder, i.e., the hanger extension.

The girder deflection wi, Equation  (30), and the cable deflection vi
 are both expressed in terms of Hl. Substituting them into the second 
deformation compatibility Equation  (14), there is only one unknown 
Hl. Consequently, the additional girder compression due to the live load 
is obtained. Plugging Hl back into wi, vi and Equation  (36), the girder 
deflection, cable deflection and hanger tension increment qh for each 
span are all gained. Finally, integrating Equation (15) twice results in the 
bending moment of the main girder as follows:

	 M x E I w H H w v� � � � � �� � �� ���
g g d l

.	 (37)

The entire solution procedure above can be easily coded as a simple 
computer program and its flow is summarised as follows:

−	 Step 1: Start. Input geometric, loading and material properties.
−	 Step 2: Solve Equation (30) for the constants A, B, C and D of wi 

using the continuous boundary conditions of the main girder, e.g., 
Equation (35). The solved wi is expressed in terms of Hl.

−	 Step 3: Solve Equation (12) for vi using the solved Equations (30) 
and (36). The solved vi is also expressed in terms of Hl.

−	 Step 4: Solve Equation (14) for Hl and thus wi, vi and qh are known.
−	 Step 5: Solve Equation (37) for M.
−	 Step 6: Output results. End.

4.	 Verification example

To verify the modified deflection theory, the same bridge example 
investigated by Jung et al. (2015) is chosen here for comparison. Its 
geometric, loading, and material properties are listed in Table 1.

Figure 3 plots the deflections of the main cable and girder computed 
by the modified deflection theory considering and not considering the 
hanger extension, i.e., Equation (15) vs. Equation (16). For this example, 
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the hanger extension is not significant, but obviously when the hanger 
extension is considered, the bridge system is more flexible and, thus, the 
maximum downward deflection is increased from 3.623  m to 3.662  m. 
In addition, by plugging the computed deflections back into the original 
sixth-order variable-coefficient differential Equation (20), it is found 
that the value of the sixth- and fifth-order differentiation terms is far 
smaller than that of the rest terms. Therefore, the approximation made 
earlier to solve the equation is rational.

Table 1. Geometric, loading and material properties of a bridge example

Property Value Property Value

Centre span length L2, m 1000 Initial camber w03, m −0.02x3 + 8

Side span lengths L1 and L3, m 400 Centre live load ql2, kN/m 127

Centre sag length f2, m 170 Side live loads ql1 and ql3, 
kN/m

0

Side sag lengths f1 and f3, m 27.2 Cable modulus Ec, GPa 196.20

Tower height h, m 185 Cable area Ac, m2 0.516

Cable weight wc, kN/m 59.48 Girder modulus Eg, GPa 206.01

Girder weight wg, kN/m 445.18 Girder area Ag, m2 1.363

Hanger weight wh, kN/m 5.88 Girder moment Ig, m4 217.39

Total dead load qd, kN/m 510.54 Hanger modulus Eh, GPa 137.34

Initial camber w01, m 0.02x1 Hanger area Ah, m2 0.051

Initial camber w02, m −0.00002(x2 − 500)2 + 13 Hanger spacing, m 20

Figure 3. Deflections of the main cable and girder
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Figure 4. Hanger tension increment of the self-anchored suspension bridge

Figure 5. Bending moment of the main girder

Table 2. Comparison of solutions using different theories

Solution Present with 
hanger extension

Present without 
hanger extension

Previous (Jung 
et al., 2015)

FEM (Jung et 
al., 2015)

Hl, MN 74.099 (−0.4%) 74.494 (0.2%) 79.671 (7.1%) 74.369

w2max, m 3.662 (8.9%) 3.623 (7.8%) 3.259 (−3.1%) 3.362

w1max = w3max, m −0.998 (8.0%) −0.994 (7.6%) −0.977 (5.7%) −0.924

v2max, m 3.661 3.623 3.259 Not given

v1max = v3max, m −1.012 −0.994 −0.977 Not given

M2max, MN-m 1792.2 (6.3%) 1771.1 (5.0%) 1556.0 (−7.7%) 1686.4

M1max = M3max, MN-m −2611.9 (8.3%) −2595.1 (7.6%) −2563.2 (6.3%) −2412.3

With hanger extension

Without hanger extension
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Meanwhile, for this bridge example, the maximum hanger extension 
w−v is 0.045  m, locating near the towers. From Equation  (12), the 
specific value of the hanger extension is dependent on the hanger tension 
increment qh, so Figure  4 plots the distributions of the hanger tension 
increment considering and not considering the hanger extension. The 
former is smaller than the latter.

Figure  5 shows the bending moment of the main girder. It can 
be seen that for the given live load, the maximum positive bending 
moment is increased from 1771.1 MN-m to 1792.2 MN-m and the 
maximum negative bending moment is increased from −2595.1 MN-m to 
−2611.9 MN-m when the hanger extension is considered.

Finally, for comparison, the present results computed by the modified 
deflection theory considering and not considering the hanger extension, 
as well as those from the previous deflection theory and complex finite 
element analysis (Jung et al., 2015), are listed in Table 2. The percentage 
in the brackets denotes the relative errors to the FEM solutions. It is 
observed that the present theory gives much closer additional horizontal 
cable force Hl to the FEM solution than the previous one. This indirectly 
confirms the appropriate consideration of the initial camber in the 
present theory. Moreover, the modified theory leads to larger deflection 
and bending moment of the main girder, which is more conservative for 
the preliminary design. Especially, if the deflection difference between 
the main cable and the main girder cannot be neglected in the design, the 
difference is properly considered in the proposed theory.

Conclusions

The study has proposed a modified deflection theory, considering the 
initial camber appropriately, taking the hanger extension into account 
and neglecting the tower flexural stiffness, for the preliminary design 
of self-anchored suspension bridge. It consists of force equilibrium and 
deformation compatibility of the whole bridge system. The theory leads 
to a complicated sixth-order variable-coefficient differential equation 
eventually. A practical approximate solution to the differential equation 
is obtained. To verify the solution, a bridge example is examined. 
Through comparison of results between the modified deflection theory 
and the previous one, some conclusions are drawn as follows:

1.	 The proposed deflection theory is effective and easy-to-use. It 
well predicts the additional horizontal cable force, the deflections 
of the main cable and girder and the bending moment of the main 
girder, and it does not require to solve nonlinear equations;
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2.	 The modified deflection theory gives closer additional horizontal 
cable force to the FEM solution than the previous theory;

3.	 The modified deflection theory gives more conservative 
deflections and bending moment due to the consideration of the 
hanger extension;

4.	 When the deflection difference between the main cable and the 
main girder is considerable, the modified deflection theory is 
capable of predicting the difference.
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