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Abstract. Distracted driving is one of the main causes of road crashes. 
Therefore, effective distinguishing of distracted driving behaviour and its 
category is the key to reducing the incidence of road crashes. To identify 
distracted driving behaviour accurately and effectively, this paper uses the 
head posture as a relevant variable and realizes the classification of distracted 
driving behaviour based on the relevant literature and investigation. A 
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distracted driving discrimination algorithm based on the facial feature triangle 
is proposed. In the proposed algorithm, the Bayesian network is employed 
to judge driving behaviour categories. The proposed algorithm is verified by 
experiments using data from 20 volunteers. The experimental results show that 
the discrimination accuracy of the proposed algorithm is as high as 90%, which 
indicates that the head posture parameters used in this study are closely related 
to the distracted driving state. The results show that the proposed algorithm 
achieves high accuracy in the discrimination and classification of distracted 
driving behaviour and can effectively reduce the accident rate caused by 
distracted driving. Moreover, it can provide a basis for the research of distracted 
driving behaviour and is conducive to the formulation of the corresponding laws 
and regulations.

Keywords: Bayesian network, distracted driving behaviour, facial feature 
triangle, feature point recognition, head posture, traffic safety.

Introduction

The road crash causing factors include human, vehicle, road, and 
environmental factors. Among human factors, distracted driving 
behaviour has been considered the leading factor causing road crashes 
(Née et al., 2019; Kidd & Chaudhary, 2019). Distracted driving generally 
refers to the driver behaviour phenomenon where driver attention 
is directed to activities that are not related to driving, resulting in the 
decline in the driving operation ability (Pope et al., 2017; Craig et al., 
2021), and the distracted driving behaviour has a direct impact on the 
probability of collision (Shaaban et al., 2020). Due to the insufficient 
accumulation of distraction category data, it is challenging to prevent 
distracted driving behaviour effectively, and thus it is difficult to 
formulate relevant regulations to reduce distracted driving behaviour 
(Nevin et al., 2017). Therefore, the way of distinguishing and classifying 
drivers’ distracted driving behaviour accurately, preventing distracted 
driving behaviour effectively, and avoiding road crashes caused by 
distracted driving successfully has been an urgent problem to be solved 
in the field of distracted driving (Tung & Khattak, 2015). Since distracted 
driving is difficult to be measured using quantitative physiological 
indicators and there have been no unified laws and regulations to 
supervise and restrict this type of driving behaviour, developing an 
accurate discrimination method of distracted driving behaviour could be 
an effective way to prevent distracted driving (Wei et al., 2021).

Parameter acquisition is the primary problem to solve when studying 
distracted driving behaviour, and selecting appropriate indicators is a 
precondition of parameter acquisition. Parameter acquisition methods 
can be roughly divided into invasive and non-invasive (Sun et al., 2017). 
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The invasive detection methods use electroencephalogram (EEG) and 
electrocardiogram (ECG). Although the invasive index is highly related 
to distracted driving, the contact between the equipment and a driver 
during the detection process greatly affects the driving state, which 
is not suitable for on-board equipment (Wang et al., 2015). The non-
invasive detection methods consider the vehicle driving characteristics 
and external environmental parameters. These indicators can be 
detected without affecting the driver, but the detection accuracy has 
been difficult to improve (Siddiqui et al., 2021). With the development of 
the face recognition technology, the face feature index detection based 
on face recognition has not only ensured the non-invasive approach to 
drivers but has also provided the theoretical feasibility to improve the 
detection progress because of the close correlation between its detection 
parameters and distracted driving features (Lei et al., 2017). Therefore, 
this paper selects the eyes and mouth parameters as indicators because 
they can effectively represent the distracted driving characteristics as a 
detection index of face recognition and constructs a distracted driving 
discrimination method based on the facial feature triangle.

Related research has shown that the most common distracted 
driving behaviours include talking to passengers, smoking, and using 
mobile phones (Parr et al., 2016). Drivers’ distracted driving behaviour 
categories present different risk levels (Fu et al., 2022), and during these 
behaviours, a driver’s head posture changes significantly. In this study, 
the yaw, pitch, and roll angles are used to quantify the head posture, 
and the head posture is used to judge distracted driving behaviour. The 
Bayesian network model is employed to fuse prior knowledge and actual 
data and learn causality (Chen et al., 2018). The Bayesian network has 
been selected due to its advantages of stable classification efficiency 
and insensitivity to missing data, and the judgment of distracted 
driving behaviour is a typical classification and discrimination problem. 
Therefore, this paper proposes a distracting action recognition method 
based on the Bayesian network.

The contributions of this study are mainly reflected in two aspects. 
First, this paper establishes a head pose estimation method using 
facial feature triangles to estimate a driver’s head pose accurately and 
effectively. Second, this paper uses the Bayesian network to establish 
a distracted driving behaviour discrimination model, which can 
effectively and accurately distinguish and classify distracted driving 
behaviour, so as to accumulate distracted category data and prevent 
distracted driving.

The rest of this paper is organised as follows. In Section 2, the current 
research and related studies are reviewed. Section 3 presents the 
index selection method, facial feature point recognition algorithm, and 
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distracted driving discrimination algorithm. The head pose estimation 
method is introduced in Section 4. The proposed distracted driving 
category judgment method is explained in Section 5. The analysis 
of experimental and prediction results is given in Section 6. The 
conclusions and future research areas are presented in Section 7.

1. Literature review 

In this study, a facial feature triangle is constructed by using the 
information on the eyes and mouth of a driver to reflect the driver’s head 
posture, and then the distracted driving state is distinguished by the 
Bayesian network. 

1.1. Head pose estimation method

In recent years, many studies have been conducted on the driver’s 
head posture detection. Fice et al. (2018) studied the driver’s head 
deflection angle and duration under normal conditions and found that 
compared with the stationary state, during the movement of a vehicle, 
the driver’s head attitude deflection amplitude was smaller and the 
duration of driver’s head attitude deflection was shorter. Zhao et al. 
(2020) used the head posture as the evaluation parameter of distracted 
driving. The experimental results show that the distracted driving state 
can be effectively judged according to head posture. Yan et al. (2022) 
found that different combinations of head, hand and object positions 
constituted a complex category of driver posture. The research shows 
that it has continuity, diversity, superposition, similarity, transition and 
interaction. Teyfouri et al. (2021) designed a fatigue warning system 
based on the driver’s neck position and blinking frequency based on the 
fact that the driver’s head drooping drives the change in the neck position 
during sleep. He et al. (2015) established the evaluation model of driver 
fatigue using the EEG data and a driver’s head nodding angle as detection 
indicators. The results showed that this method could effectively prevent 
driver fatigue during driving. Therefore, the distracted driving state can 
be distinguished based on the head state, so this paper selects the head 
posture as an evaluation index of the driving state.

In the non-invasive detection indicators, the eyes and mouth on a 
relatively stable face can be used as feature points to construct a facial 
feature triangle, which can reflect the driver’s head posture (Ghimire 
et al., 2017). On this basis, the paper uses three parameters, namely, 
the yaw, pitch, and roll angles, to quantify the head deflection angle to 
improve the detection accuracy of Head Pose Estimation.
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1.2. Facial feature point recognition algorithm

Based on the increasingly mature image classification and detection 
technology, the recognition methods of a driver’s distracted driving face 
can be mainly divided into traditional computer vision (CV) algorithms 
and deep learning-based algorithms. Driver distraction detection 
based on the traditional CV algorithms extracts image features using 
the scale invariant feature transform (SIFT), histogram of oriented 
gradient (HOG), and other feature operators (Zhang, Tang, & He, 2019), 
then combines them with the support vector machine (SVM) and 
establishes a classification model. However, traditional CV algorithms 
have the disadvantages of high requirements for the environment, a 
narrow application range, numerous parameters, and a large amount 
of calculation. Convolutional neural networks (CNNs) have been proven 
to be the most effective technology to achieve high precision in face 
recognition (Zhang et al., 2019). With the rapid development of deep 
learning, CNNs have been applied to many computer vision tasks, such 
as image recognition and target detection (Ding & Tao, 2018). The 
test results of face recognition show that the performance of image 
recognition and detection could be significantly improved using 
the CNNs (Hu et al., 2019). The comparison of different recognition 
algorithms shows that the aggregating handcrafted and deep CNN 
features can make up for the deficiency of deep learning with higher 
accuracy (Alkinani et al., 2022). The recognition methods based on 
deep learning have attracted great research attention in recent years. 
By using an instrument panel camera in a car to record a driver’s 
driving process and a pretrained neural network model to detect and 
recognise the captured image, extracting the local neighbourhood 
texture information of a grey image, it is found that the mouth and 
eyes contribute the most to facial expression, the deep learning-based 
algorithm can obtain a high recognition rate (Zhang & Hua, 2015). 
Therefore, this study uses a deep learning-based method to recognise a 
driver’s face and mark the facial feature points.

In this study, the eyes and mouth are selected as facial feature points. 
At present, three types of methods have been commonly used for human 
eye positioning: 

1. Feature-based methods, such as the projection method, which 
have fast processing speed but are greatly affected by the face 
pose transformation;

2. Shape-based methods, such as the template matching method, 
which can achieve accurate positioning, but usually include 
a large amount of calculation and have insufficient real-time 
performance;
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3. Performance-based methods, such as the AdaBoost algorithm, 
which have strong robustness but often require a large number of 
training samples.

This paper combines the projection method and Hough transform 
to detect the circle, locate the eyeball accurately, and overcome their 
shortcomings. The combined algorithm improves the accuracy and speed 
of human eye positioning. In addition, on the basis of the eye positions, 
the mouth is located according to the distribution characteristics of 
facial organs.

1.3. Distracted driving behaviour discrimination method

The in-depth study of distracted driving has shown that 
the parameter curves of a distracting action often have similar 
morphological characteristics. Therefore, similar parameter curves can 
be classified, and then the description characteristics can be obtained 
according to the characteristics of the parameter curves and distracting 
action. By using multiple description features to express and describe 
the knowledge about distracting action, the morphological features of 
the parameter curve can be recognised, and then the distracting action 
can be determined. There are four main types of distracted driving: 
cognitive, visual, audio (Babić et al., 2021; van der Zwaag et al., 2012; 
Warren & Micha, 2011; Catalina et al., 2020) and manual distraction 
(Zhang & Hua, 2015). The Bayesian networks can learn causal 
relationships. Therefore, it is an ideal model to fuse a priori knowledge 
and data and realise reasoning under the condition of incomplete and 
uncertain information. It can learn from practice and optimize the 
network structure and parameters (Yang et al., 2010; Fasanmade et al., 
2020). The Bayesian network has many advantages in classification. 
For instance, it uses a graphical method to describe the relationship 
between data, which is simple and efficient; it is beneficial to deal with 
incomplete datasets; it can deal with the causal relationship between 
variables. In addition, combining the Bayesian statistics can make full 
use of information on the domain knowledge and sample data (Ruitao, 
2021). Therefore, in this study, the Bayesian network is used, and a 
distracting action recognition method based on the Bayesian network is 
proposed. First, parameters related to a distracting action in distracted 
driving data are divided into multiple morphological feature classes 
using the time series hierarchical clustering method based on the DTW 
(Distance to Waypoint) distance (Wan et al., 2017). Next, the descriptive 
characteristics of each parameter curve are determined by the method 
based on the statistical dependency analysis to distinguish various 
parameter sequences. Then, a Bayesian network for distracting action 
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recognition is constructed by fusing multiple description features (Liang 
& Lee, 2014). Finally, the recognition of distracting actions is realised by 
the Bayesian network reasoning.

2. Feature point recognition of human eyes 
and mouth 

This section may be divided by subheadings. It should provide 
a concise and precise description of the experimental results, their 
interpretation, as well as the experimental conclusions that can be 
drawn.

2.1. CNN-based face recognition

The CNN model used in this paper consists of two convolution layers 
and two maximum pooling layers. To improve the accuracy of face 
recognition, in the proposed CNN model, the 5×1 and 1×5 convolution 
kernels are used instead of the 5×5 convolution kernel to reduce the 
parameter number and calculation amount and improve the accuracy. 
After being processed by the connection layer, the input is sent to the 
output layer, and the softmax function is used as a classification function 
in the classification process. The CNN model structure and calculation 
steps are shown in Figure 1.

Figure 1. The CNN model structure
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2.2. Eye feature point positioning based on Hough 
transform

In a face image, first, the face area is cropped. Then, the human eyes 
are roughly located through two integral projections, and the edge of 
the roughly located eye grey image is extracted after enhancement 
processing. The boundary of the eyeball region is obtained by processing 
the previous section. The idea of using the Hough transform is as follows. 
First, two points m and n on a circle, having the coordinates of xm, ym and 
xn, yn respectively, are recorded. The centre of the circle must be on the 
vertical line connecting the two points, and this vertical line is defined 
by:

 x x y y x x y ym m n n�� � � � � � � �2 2 2 2( ) ( ) ( ) . (1)

Then, a value of one is added to the accumulated value 
of all points on this vertical line in the parameter space. 
Finally, the point with the largest accumulated value in the 
parameter space is extracted. This point represents the 
centre of the detection circle. The detected centre is the 
position of the pupil, which denotes the position of the eye 
feature point. The positions of eye feature points are marked 
as B and C, as shown in Figure 2.

2.3. Mouth positioning

Once the eyes have been located, the mouth location can be obtained 
based on the eye locations. According to the distribution characteristics 
of facial organs, the mouth area can be roughly divided, as shown in 
Figure 3(a). Also, according to the distribution law of facial organs, it is 
assumed that the distance between two eyes is a; the size of the mouth 
area is 0.4a × 1.3a, and this area is located below the eyes at a distance of 
a. The experimental analysis has shown that in the HIS space, selecting 
H component can accurately distinguish the colour of skin and lip. 

B C

Figure 2. Recognition results 
of eye feature points

Figure 3. Mouth positioning.

a) Mouth area b) Mouth feature point positioning

a

a

1.3a
0.4a
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Therefore, in the H component, after morphological image processing, 
the mouth area is selected by a rectangular frame, and the centre of the 
rectangle is taken as the centre of gravity of the mouth. The centre of the 
mouth represents the feature point of the mouth, which is marked as A. 
The mouth detection process is shown in Figure 3(b).

3. Facial feature triangle-based driving attitude 
estimation 

In the head movement analysis, the eyes and mouth with a stable 
facial movement are selected as feature points to construct the facial 
feature triangle. Using the geometric changes in the facial feature 
triangle, the yaw, pitch, and roll angles of the head can be determined 
and used as parameters to infer the head posture. The changes in the 
yaw, pitch, and roll angles can be used to judge whether the driver is 
distracted.

Attitude parameter estimation mainly refers to calculating the 
deflection angle of the head relative to the three coordinate axes, namely, 
yaw, pitch, and roll, as shown in Figure 4. The vertical direction of a 
driver’s head image is set as the z-axis, the horizontal direction is set as 
the x-axis, and the direction perpendicular to the driver’s image is set as 
the y-axis.

In a video image, the relative position of eyes and mouth change 
with the change in the head posture, and they show certain geometric 
features. Therefore, as long as the positions of eyes and mouth are 
located, the head posture can be preliminarily estimated. 

Assume the coordinates of feature points A, B, and C in the 
pixel coordinate system are denoted by (x1, y1), (x2, y2) and (x3, y3), 

Figure 4. The head pose model

Turning head

Swing head

h
b c

a

y
x

z

Nodding head
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respectively. According to the geometric relationship characteristics of 
the human face, when the head is facing a camera, ΔABC is an isosceles 
triangle, and when the head posture changes, the ΔABC geometry in an 
image also changes. Therefore, the current head posture can be judged 
by analysing the ΔABC geometric features.

According to the three vertex coordinates of the face feature triangle, 
the three side lengths of ΔABC can be obtained as follows:

 a x x y y� � � �( ) ( )3 2
2

3 2
2 , (2)

 b x x y y� � � �( ) ( )3 1
2

3 1
2 , (3)

 c x x y y� � � �( ) ( )2 1
2

2 1
2 . (4)

The three sides a, b, and c of ΔABC correspond to angles ∠A, ∠B and 
∠C, respectively, which are obtained as follows:
 � � �� ��A B C� , (5)

 � � �� � ��

�
�

�

�
�

�

�
�

�

�
�B

c a
c b aarccos

1

2

1 2 2 , (6)

 � � � �� ��

�
�

�

�
�

�

�
�

�

�
�C

b
a

a
c barccos

1

2

1 2 2 . (7)

The height corresponding to side a of ΔABC is given by:

 h
p p a p b p c

a
�

� � �2 ( )( )( )
, (8)

where p = (a + b + c)/2.

3.1. Yaw attitude analysis

Yaw indicates that a driver’s head rotates around the z-axis, as shown 
in Figure 5(a). As shown in Figure 5(b), in the video image (i.e., the x-z 
plane), ΔApBpCp is no longer an isosceles triangle, and its properties 
change. Further, as also presented in Figure 5(b), in which direction the 
head rotates, in that direction, the triangle top angle will become larger. 
For instance, if ∠C > ∠B, the head rotates to the right, but if ∠B > ∠C, 
turn the head rotates to the left. For the convenience of calculation, two 
triangles are projected onto the x-y plane, as shown in Figure 5(c).

Set the rotation angle as α; then, it holds that:

 � � arccos
'

a
a

, (9)

where α denotes the distance between the eyes after turning the head; a′ 
is the distance between the eyes in the frontal image of the head.
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When turning the head, the side length of the feature triangle 
changes, but the corresponding height h stays unchanged. According to 
the positional relationship between the mouth and eyes presented in 
Figure 5(a), it holds that

 a h
'

.
=
1 2

. (10)

Therefore, it can be written as:

 � � arccos
.1 2a
h

. (11)

3.2. Pitch attitude analysis

Pitching refers to the rotation of the head around the x-axis, as 
shown in Figure 6(a). In a video image (i.e., the x-z plane), as shown in 
Figure 6(b), ABC and 123 denote isosceles triangles, and the height h of 

Figure 5. The head turn model. 

c) The projection of the two 
triangles onto the x-y plane

b) The x-z plane corresponding 
to the video image

a) The head rotation model about the z-axis

y

y

x x

z
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the characteristic triangle changes. Set the pitch angle as BB. For the 
convenience of calculation, project two triangles onto the y-z plane, as 
shown in Figure 6(c).

It can be written as:

 � � arccos
'

h
h

, (12)

where h denotes the height of the triangle in the image after nodding, 
and h′ is the height of the triangle in the frontal image of the head.

When nodding, although the coordinate positions of the eyes in an 
image are changing, the relative distance between the eyes remains 
unchanged, i.e., a remains unchanged. According to the previous 
analysis, for the front face image, the centre of the mouth should be 
located at 1.2a below the eyes, so it can be written as:

 h a' .=1 2 . (13)

Therefore, it holds that

 � �
� � �

arccos
( )( )( )

.

2

1 2 2

p p a p b p c
a

. (14)

Figure 6. The nodding model

b) The x-z plane corresponding 
to the video image

c) The projection of the two 
triangles onto the y-z plane

a) The head rotates around the x-axis

y

x

z

y

z
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3.3. Roll attitude analysis

Tumbling means that the head rotates around the y-axis, as shown in 
Figure 7(a). In a video image (i.e., the x-z plane), as shown in Figure 7(b), 
ΔApBpCp and ΔA′pB′pC′p denote isosceles triangles, and the distance 
between the two eyes remains unchanged. The only change in the image 
after the head rotation around the y-axis is that the height h of ΔApBpCp 
is no longer parallel to the z-axis, but forms a certain angle with the 
z-axis, which is denoted by γ. For the convenience of calculation, the two 
triangles are projected onto the x-z plane, as shown in Figure 7(c).

Considering the actual situation, the motion range of the head swing 
is small. Define the motion range in the image pixel coordinate system 
as x3 < x1 < x2. Then, if y2 > y3, the head deviates to the left, the deflection 
angle γ is given by:

 � �
��

�
�

�

�
� � �arccos

y y
c

C2 1 1

2
, (15)

If y2 < y3, the head deviates to the right, and the deflection angle γ is 
given by:

 � �
��

�
�

�

�
� � �arccos

y y
c

C3 1 1

2
. (16)

Figure 7. The head swing model

a) The head rotates around the y-axis

b) The x-z plane corresponds 
to the video image

c) The projection of the two 
triangles onto the y-z plane

y

x

z

x

z
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4. Bayesian network-based distracted driving 
category judgment method 

4.1.  Morphological and description feature node 
construction

Descriptive and morphological feature nodes refer to the first and 
second-layer nodes in the Bayesian network model, respectively. These 
nodes are the key to the Bayesian network construction. They include 
the classification of parameter sequences, as well as the discretization 
and selection of descriptive features.

4.1.1.  Parameter sequence classification based on hierarchical clustering
This paper adopts condensed hierarchical clustering; it starts from 

a single distracted driving behaviour sample, then merges smaller 
distracted driving behaviour samples and, finally, forms a distracted 
driving behaviour category containing all samples. In this study, relevant 
parameter sequences of simulated distracted driving behaviours are 
clustered based on the DTW distance. According to the clustering 
situation, the distance threshold is set for classification, and multi-class 
parameter sequences are obtained as morphological feature nodes. 
Fifteen typical distracted driving behaviours, including visual, cognitive, 
operational, and auditory distractions, are considered, as shown in Table 1.

Table 1. Fifteen typical distracted driving behaviours

Distraction type Behaviour type Behaviour description
Visual distraction Behaviour A Checking a mobile phone

Behaviour B Looking at the dashboard
Behaviour C Looking out a window of a vehicle
Behaviour D Looking at a pedestrian on the roadside

Cognitive distraction Behaviour E Thinking about things unrelated to driving
Operational distraction Behaviour F Tuning instruments (radio, air condition, or navigation)

Behaviour G Lighting a cigarette
Behaviour H Doing makeup or looking in the mirror
Behaviour I Eating food or drinking the water
Behaviour J Phone  
Behaviour K Sending a message
Behaviour L Combing the hair
Behaviour M Reaching out to the back

Auditory distraction Behaviour N Talking to passengers
Behaviour O Listening to the radio and music
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4.1.2. Description features and their discretization
According to the specific analysis of the distracted driving behaviour 

and related parameters, the description characteristics of a parameter 
sequence are determined. The description characteristics and their 
descriptions are shown in Table 2. The discretization results of 
describing the features are shown in Table 3. The continuous quantity 
uses the heuristic Gaussian cloud algorithm to mine the qualitative 
concept of each description feature of distracted driving behaviour 
and divides the interval with the intersection of the expected curve. 

Table 2. Description features and their descriptions

Nature Descriptive feature Description

Continuous 
quantity

Absolute cumulative variation Sum of absolute variation values 

Cumulative variation Sum of changes of parameter

Maximum value Maximum absolute value of a parameter

Maximum difference Difference between the maximum and minimum 
values of a parameter 

Duration Time needed to complete an action

Changing process The overall changing trend of a parameter

Table 3. The characteristics and their discretization

Parameter Descriptive feature Discrete interval / Changing process

Yaw angle Absolute cumulative variation (0, 20), [20, 50), [50, 90), [90, 135), [135, 180), [180, 
270), [270, +∞)

Cumulative variation (−∞, −5), [−5, 5), [5, +∞)

Maximum (0, 60), [60, 90), [90, 135), [135, 180)

Maximum difference (0, 30), [30, 45), [45, 60), [60, 90), [90, 135), [135, 360)

Pitch 
angle

Absolute cumulative variation (0, 70), [70, 157), [157, 203), [203, 282), [282, +∞)

Cumulative variation (−∞, −45), [−45, 45), [45, +∞)

Maximum (0, 15), [15, 30), [30, 45), [45, 60), [60, 90)

Maximum difference (0, 45), [45, 90), [90, 180)

Roll angle Absolute cumulative variation (0, 160), [160, 200), [200, 340), [340, +∞)

Cumulative variation (0, 27), [27, 140), [140, +∞)

Maximum (0, 30), [30, 45), [45, 75)

Maximum difference (0, 90), [90, 150)

Public Duration (0, 2), [2, 4.5), [4.5, 7), [7, +∞)
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The obtained interval is used for node discretization of the description 
features of distracted driving behaviour. The change in the continuous 
quantity corresponds to the overall changing trend of a parameter 
without considering small fluctuations in data.

4.1.3. Node selection of description feature class based on statistical 
dependency statistical analysis

The dependency relationship is usually determined by the mutual 
information or conditional mutual information of two nodes, which 
indicates the correlation degree of the two nodes. The dependency 
relationship between the feature nodes and morphological feature 
nodes can be analysed and described by statistical or information theory 
methods.

Let us assume that X and Y represent two nodes, having the values of 
x and y, respectively. Then, the mutual information between nodes X and 
Y is given by:

 I X Y p x y p x y
p x p yx y

, , log
( , )

( ) ( ),
� � � � �� . (17)

The greater the value of I(X,Y) is, the stronger the dependency 
between nodes X and Y is, i.e., the greater the correlation between them 
is. If I(X,Y) is less than the set threshold ξ, nodes X and Y are considered 
independent. Therefore, Equation (5) has been usually used for the 
conditional independence test of nodes.

The statistical dependency analysis is used to calculate the 
mutual information I between a description feature class node and a 
morphological feature class node of the corresponding parameter. By 
setting the threshold ξ, the description feature class node with a strong 
dependency is selected to construct the Bayesian network.

The calculation results of mutual information between the 
description feature nodes of the Bayesian network and their 
corresponding morphological feature nodes are shown in Table 4. In 
this study, the threshold is set as ξ = 0.5 according to the actual demand. 
The description feature nodes of mutual information I > ξ are selected 
as morphological feature nodes, and the selection results are shown in 
Table 5.
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Table 4. Calculation results of mutual information between the nodes

Description class feature node
Morphological feature class node

Yaw angle Pitch angle Roll angle 

Absolute cumulative variation 1.314 0.919 1.095 

Cumulative variation 0.788 0.297 0.211 

Maximum value 1.189 0.961 0.989 

Maximum difference 0.710 0.787 0.845 

Duration 0.755 0.578 0.514 

Table 5. The results of the feature class nodes

Morphological 
feature class node Feature class node description

Yaw angle
Absolute cumulative variation, maximum value, 
maximum difference, duration

Pitch angle
Absolute cumulative variation, maximum value, 
maximum difference, duration variation process, 
duration

Roll angle
Absolute cumulative variation, maximum value, 
maximum difference, duration

Figure 8. The structure of the Bayesian network model used for driving 
behaviour recognition
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4.2. Bayesian network-based distracted driving behaviour 
recognition method

4.2.1.  Bayesian network construction

The Bayesian network model used in the proposed driving behaviour 
recognition method includes three layers, namely, description feature 
layer, morphological feature layer, and driving behaviour layer, as shown 
in Figure 8. The description feature layer is the first layer, and it includes 
the description features of each head pose parameter. The morphological 
feature layer is the second layer, and it indicates the morphological 
characteristics of each parameter sequence, including analogue quantity 
information and switching quantity information. The driving behaviour 
layer is the third layer, and it represents various distracted driving 
behaviours.

4.2.2. Identification process

The driving behaviour recognition process based on the Bayesian 
network includes two main steps, the Bayesian network learning and 
Bayesian network reasoning, as shown in Figure 9.

Figure 9. The block diagram of the driving behaviour recognition system
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The Bayesian network reasoning is based on the conditional 
probability calculation when the network model is known. Through the 
analysis and application of known conditions, the target node probability 
is calculated. The change characteristics of each parameter are extracted 
from the driving data to be identified and then discretized and input into 
the Bayesian network. The probability obtained in the Bayesian learning 
process is used for a priori probability calculation to infer the probability 
that the input data belongs to the corresponding action.

5. Case study and discussion

The characteristic physiological data of the driver were obtained 
using the CLT-353 simulation driving platform. The driving device had 
the same operation mode as the real car and was equipped with a force 
feedback system, which could simulate the real driving environment. 
In the experiment, the triangle index data of the driver’s facial features 
were obtained by an infrared anti-shake camera.

To test the actual detection accuracy of the proposed method, 20 
volunteers of different genders were selected to participate in the 
test. The volunteers had different driving experiences. There was no 
significant difference in the relationship between executive functions 
and distracted driving behaviours (Zhang et al., 2020); thus, these 
volunteers were classified into the age groups of 18–30 (5 male and 3 
female), 30–45 (3male and 3 female), and 45–70 (4 male and 2 female). 
The volunteers were assigned numbers from the range of 1–20, and 
the simulation test was performed on the above-mentioned driving 
simulator.

5.1. Facial feature triangle-based head pose detection

To test the accuracy of the facial feature triangle used for head pose 
estimation, the following tests were conducted. The camera was placed 
at a fixed position G; the seat was fixed in front of the camera; the 
intersection between the front of the camera and the top of the seat was 
denoted as point O; points A, B, C, A′, B′, C′ were marked on the left and 
right sides of the camera head; the angles of OA, OB, OC, OA′, OB′, OC′, and 
OG were 20°, 30°, 40°, 20°, 30°, and 40°, respectively. Similarly, points D, 
E, F, D′, E′, F ′ were denoted at angles of 20°, 30°, and 40° above and below 
of the camera; strip marks were denoted at 20°, 30°, and 40° on the left 
and right of the longitudinal axis. During the test, the volunteers only 
turned their heads, while pupil, sight, and body remained unchanged, 
and looked at each mark in turn. For each volunteer, data of 100 rounds 
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were collected, summarised, and sorted, and the average error was 
calculated by:

 X
xi

i�

�
�
�( )�
1

10

10
, (18)

where X  represents the average error of a data reading, xi represents the 
ith reading at the same position, and ε represents the angle marked by 
the fixation mark point.

The head pose estimation was performed using the proposed facial 
feature triangle algorithm. The target angle of gaze was compared to 
evaluate the accuracy of the facial feature triangle-based head pose 
estimation.

Figure 10. The mean errors obtained based on the facial feature triangle: 
(a) roll angle; (b) pitch angle; (c) yaw angle
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Integrating all experimental results, the absolute value of the angle 
error was calculated to be within 3°. The test results for different 
angles are shown in Figure 10. As shown in Figure 10, the head pose 
estimation result was in line with the actual situation, and high accuracy 
with a small error range was achieved. Unlike the traditional attitude 
estimation, the proposed algorithm does not require information on the 
initial attitude, is easy to implement, and has a faster calculation speed.

5.2. Facial feature triangle-based distracted driving 
detection

To test the distracted driving detection accuracy of the proposed 
algorithm, the following experiments were conducted. Volunteers were 
asked to drive normally and make some distracted driving behaviours 
randomly during the driving process, such as looking at a mobile phone, 
lighting a cigarette, eating food, and taking certain things. The video 
images of the drivers’ driving state were collected and edited. Each video 
lasted 3–5 s. Humans judged the driver’s driving state to determine 
whether the driver is in a distracted driving state and in what kind of 
distracted driving state. For each driver, 100 segments were selected, 
and the proposed algorithm was used to distinguish each of the 
segments. The correct output of the driving state discrimination was 
denoted by “1” and the wrong output was denoted by “0”. The sum value 
M of the judgment results was obtained by:

 P
M

n
n=

100
, (19)

where Pn is the discrimination accuracy of a driver n, and Mn is the sum 
of the judgment results of the driver n.

The detection accuracy of 20 drivers is shown in Figure 11.

Figure 11. The overall detection accuracy of 20 drivers
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As shown in Figure 11, the distraction discrimination algorithm 
based on the facial feature triangle had high recognition accuracy, which 
could provide a guarantee for the smooth and accurate operation of the 
system and ensure the feasibility of subsequent research.

5.3. Bayesian network-based distracted driving behaviour 
judgment

To verify the accuracy and effectiveness of the proposed judgment 
method of the distracted driving category based on the Bayesian 
network, the simulation tests were conducted using the driving 
simulator. In the early Bayesian network parameter learning, 10 
volunteers were randomly selected from 20 volunteers to simulate 
15 typical distracted driving behaviours. Each behaviour included 
10 groups of video data, so a total of 1500 groups of sample videos 
were collected in the experiment. The Bayesian network model was 
constructed using the Netica software developed by Norsys company 
in Canada. For each action, 100 groups of data were preprocessed, 
and feature sequences were extracted. The feature class nodes were 
discretized, and the parameters were optimized combined with the EM 
algorithm to construct the CPT to realise the parameter learning of the 
Bayesian network. Taking the yaw angle model as an example, after the 
CPT was applied, the Bayesian network yaw angle model for distracting 
action recognition was obtained, as shown in Figure 12.

The driving data of another 10 drivers were selected as test samples. 
Each driver performed 10 distracted driving actions randomly in the 

Figure 12. The Bayesian network model used for describing the characteristic 
nodes and morphological characteristic nodes of the yaw angle

Description class feature node Morphological feature node
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test; 100 groups of test samples were collected and used as the input of 
the Bayesian network model. According to the edge probability of class 
nodes and the conditional probability of characteristic nodes determined 
by the learning process of the Bayesian network, the Bayesian reasoning 
was performed. The probability of class nodes of distracted driving 
behaviour was used as a basis for judging the distracted driving action 
type; namely, the distracted driving action corresponding to the place 
with the largest probability was considered the recognition result. 
The results of the first and fourth groups of test samples are shown in 
Figure 13. As displayed in Figure 13, the probabilities of behaviours 
J and F were the largest, so it was judged that the action recognition 
results of distracted driving behaviour of the first and fourth groups of 
test samples were action J (phone) and F (adjusting instruments such 
as radio, air condition, or navigation), respectively. In the experiment, 
for 91 groups of 100 test samples, the distracted driving behaviour was 
correctly judged, and the results of only 11 groups were wrong; thus, the 
discrimination accuracy of 91% was achieved. Therefore, the proposed 
solution could achieve high discrimination accuracy of distracted driving 
behaviour.

5.4.  Discussion

This experiment verified the feasibility of distinguishing distracted 
driving based on facial feature triangles. In addition, compared with 
other classification models, because of the advantages of Bayesian 
network classification efficiency stability and insensitivity to missing 
data, this experiment has good performance in judging distracted 

Figure 13. Probabilistic reasoning results
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driving behaviour. However, this experiment also has some limitations. 
For example, the size of samples collected is relatively small, and the age 
of participants is not divided in detail, which is also the scope of our next 
research.

Conclusions

Distracted driving has always been one of the crucial factors causing 
road crashes. This driving behaviour is related to drivers’ driving 
habits, road environment, and other related factors. When analysing 
the distracted driving of a driver, this paper takes the head posture as 
a detection index. Based on the real driving data of 20 drivers, a driver 
distraction discrimination and classification model is developed. The 
image sensor is used for data acquisition, and the Bayesian network is 
used to identify the distracted driving behaviour category. The proposed 
method adopts a non-contact detection index, which can distinguish 
and classify distracted driving behaviour without affecting the driver’s 
normal driving. The experimental results show that the proposed 
method has good recognition performance and can identify and classify 
a driver’s distracted state accurately and rapidly. The results confirm 
that the head posture parameters are closely related to the distracted 
driving state. Compared with other methods, Bayesian network has the 
characteristics of stable efficiency and insensitivity to missing data, so 
it can more accurately distinguish the distracted driving behaviour 
category. The proposed method can provide a reliable data basis for 
standardizing the driver driving behaviour, thus preventing the driver 
distracted driving, and help define relevant laws and regulations. 

In the future, the proposed method framework could be improved. 
Namely, for small or difficult targets in images or videos of the human 
head, the weight in the proposed method could be adjusted appropriately 
to improve the overall recognition effect of the method. In addition, 
depth images could be used to estimate the head posture. The datasets 
used in this study include the RGB images. Although such training data 
are easy to obtain and suitable for extensive research, in the process 
of feature training, the RGB-D images could provide sufficient feature 
information and more dimensional information. Namely, the RGB-D 
images have more advantages than ordinary images under extreme 
conditions and can meet the requirements under strict accuracy 
requirements.
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