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Abstract. The Response Surface Methodology (RSM) is a collection of 
methods used to create various experiment designs, determine relationships 
between experimental variables and responses, and use these relationships to 
identify the ideal conditions. This study uses RSM to forecast the mechanical 
characteristics of mixtures modified with steel slag and lime. Using the Box 
Behnken Design (BBD) method for the mix proportion, steel slag (0–100%), lime 
(0–4%), and bitumen content (4–8%) were considered independent variables, 
while the responses were the resilient modulus, indirect tensile strength, 
flexural stiffness, and compressive strength. Analysis of variance showed that 
the steel slag was the most influencing factor for the flexural stiffness property 
of the steel-slag and lime-modified asphalt mixtures. Also, the regression 
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coefficient (R2) of 0.9214, 0.8380, 0.7412, and 0.8266 was obtained for the 
stiffness, Mr, compressive strength, and ITS, respectively. Some interaction 
effects on the responses were found between the steel slag and lime. The 
optimization findings show that 25.01% steel slag, 2.43% lime, and 5.51% 
bitumen content are the best values to satisfy the design criteria. The optimized 
mixture design will offer a cost-effective and environmentally friendly 
solution, promoting resource conservation and sustainable development in the 
construction industry.

Keywords: asphalt mixtures, ITS, lime, optimization, Resilient Modulus, RSM, 
steel slag, stiffness.

Introduction 

In recent years, using industrial by-products as alternative 
construction materials has gained significant attention due to its 
potential for sustainable development and resource conservation 
(Akadiri et al., 2012; Oguntayo et al., 2023a; Oguntayo et al., 2023b; 
Oguntayo et al., 2023c). Steel slag, a by-product created during steel 
manufacture, is one such by-product (Hainin et al., 2015). According 
to Jiang et al. (2018), steel slag has potential engineering qualities that 
make it appropriate for use in various applications, including building 
roads, the manufacture of cement, and soil stabilization. However, 
the inherent variability and unknowns surrounding its mechanical 
behaviour hinder its use as a building material (Gao et al., 2020). 
Researchers have investigated various modification techniques to 
improve steel slag engineering qualities (Wang et al., 2021). Lime 
modification has been identified as a potential technology for enhancing 
the mechanical properties of mixes made from steel slag (Mohammed 
& Elsageer, 2018; Dang et al., 2022; Gu et al., 2018; Subathra Devi et 
al., 2015). The mechanical properties of steel-slag and lime-modified 
mixes must be thoroughly investigated to understand their potential 
for sustainable construction applications (Hainin et al., 2015; Wu et al., 
2019).

Response surface methodology (RSM), a statistical modelling and 
optimization tool, has gained more popularity recently as a method for 
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forecasting and enhancing complex engineering systems (Braimah et al., 
2016; Doust et al., 2016; Aladegboye et al., 2022; Oguntayo et al., 2024). 
According to Raissi and Farsani (2009) and Hamzah and Omranian 
(2016), RSM provides an efficient framework for analysing how various 
variables affect the response of interest and developing mathematical 
models to predict system behaviour. While using a limited number 
of experimental trials, RSM enables exploring a wide range of design 
components and their interactions, providing valuable insights into the 
system behaviour under study (Doust et al., 2016). Bala et al. (2017) 
used RSM to investigate nano-silica and binder content optimization to 
improve the volumetric properties of asphalt mixtures modified with 
nanocomposite materials. The outcomes show that binder content and 
nano-silica have sizeable individual effects and that RSM optimization is 
highly efficient.

Additionally, Nassar et al. (2016) investigated cold bitumen emulsion 
mixtures (CBEM) and the optimization of the mix design parameters, 
such as bitumen emulsion content (BEC), pre-wetting water content 
(PWC), and curing temperature (CT), to establish the ideal ratios for 
the CBEM mechanical and volumetric properties. Nassar used RSM and 
central composite design (CCD). The results show that the interactions 
between BEC, PWC, and CT affect the mechanical properties of CBEM. 
However, compared to other approaches, the RSM method provides a 
more thorough understanding of how each mix design parameter affects 
the mechanical and volumetric responses of CBEMs.

Several mix factors influence performance of a bituminous mixture 
as a composite material. An RSM may be required to choose a mix with 
the desired properties if every mix variable is considered (Hoseinpour-
Lonbar et al., 2020). In this study, the Box Behnken Design (BBD) method 
was utilized for the mix proportion of the steel slag and lime-modified 
asphalt mixtures. Using steel slag (A), lime (B), and bitumen (C) as the 
independent variables, the test responses of interest are the resilient 
modulus, indirect tensile strength, stiffness, and compressive strength. 
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1.	 Materials and method

1.1.	 Materials

i.	 Aggregate: The granite used for the coarse aggregate was 
12.5 mm, and 10 mm granite was sourced from a quarry in Omu-
Aran, Kwara State. As the fine aggregate, quarry dust that passes 
through a 4.75  mm sieve was employed. The filler used in this 
study is stone dust that passes a 75 mm sieve. Table 1 displays the 
aggregate characteristics and Figure 1 is the combined aggregate 
gradation for the mixture. 

ii.	 Steel slag: Steel slags from Prism Steel Mills Limited in Ikirun, 
Nigeria, were used in this study. As it was produced during the 
refinement of scrap steel in an electric-arc furnace, this slag is also 
known as an electric-arc furnace (EAF) slag. Steel slag was used to 
replace the coarse aggregate of size 12.5 mm.

iii.	Bitumen: Penetration grade 60/70 of bitumen was used in this 
study. Table 2 displays the properties of bitumen.

iv.	 Lime: Lime used in this study is hydrated lime from the local 
market. The properties of the lime are shown in Table 3.
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Figure 1. Combined aggregate gradation used for the asphalt production
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Table 2. Bitumen properties

Parameters Specification Value

Penetration @ 25 °C 60–70 66

Ductility @ 25 °C 100 MIN 121

Solubility 99.5 MIN 107.00

Viscosity 2400 MIN 2753

Flash point, C ≥ 250 287

Softening Point 55–65 56

Specific gravity @ 25 °C 1.01–1.06 1.02

Minimum loss on heat for 5 hours at 163 °C Max. 0.2 0.08

Drop in penetration after heating Max. 20 13.5

Table 3. Lime (hydrated lime) properties

                     
Parameters Value 

Specific gravity 2.56

Fineness, % 6.00

CaO, % 85.78

MgO, % 3.52

SO3, % 1.47

CO2, % 3.89

Table 1. Aggregate properties

Parameters Steel-slag Granite Specification
Aggregate impact value, % 9.5 19.44 30% max
Aggregate crushing value, % 13.6 17.2 30% max
Specific gravity 2.44 2.71 2.5–3.0
Flakiness index, % 19.1 23.6 30% max
Elongation, % 18.7 13.3 30% max
Aggregate abrasion value, % 30.2 26.7 40% max
Water absorption, % 1.69 0.17 4% max
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1.2.	 Mix design

The Box Behnken Design (BBD) experimental runs were produced 
using the Response Surface Methodology (RSM), a feature of the Design 
Expert software version 13, available for download. Steel slag (A), lime 
(B), and bitumen (C) are three parameters, or independent variables, 
that are varied over three (3) levels as +1 (high level), −1 (low level), 
and centre point (mid-level), as given in Table  4. Table  5 displays the 
experimental run created for the steel-slag and lime-modified asphalt 
mixtures.

Table 4. Independent parameters, including coded levels

Parameters Code Unit
Coded parameter levels
−1 0 +1

Steel slag A % 0 50 100
Lime content B % 0 2 4

Bitumen content C % 4 6 8

Table 5. Experimental design for steel-slag and lime modified asphalt mixtures

S/N
Steel Slag: 

A,
%

Lime 
content: 

B, %

Bitumen 
content: 

C, %

Steel slag: 
A,
g

CA: 
12.5 mm, 

g

CA: 
10 mm, 

g

FA,
g

Filler, 
g

1 0 2 4 0 480 240 360 120

2 0 4 6 0 480 240 360 120

3 100 2 4 480 0 240 360 120

4 100 2 8 480 0 240 360 120

5 0 0 6 0 480 240 360 120

6 50 0 4 240 240 240 360 120

7 50 2 6 240 240 240 360 120

8 50 0 8 240 240 240 360 120

9 100 4 6 480 0 240 360 120

10 50 2 6 240 240 240 360 120

11 50 2 6 240 240 240 360 120

12 50 2 6 240 240 240 360 120

13 50 2 6 240 240 240 360 120

14 0 2 8 0 480 240 360 120

15 100 0 6 480 0 240 360 120

16 50 4 4 240 240 240 360 120

17 50 4 8 240 240 240 360 120
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1.3.	 Mixture preparation and testing

The asphalt mixtures were made in compliance with ASTM D 
1559-89 standards using Table  5. Dry sieving was used to divide the 
aggregates into the required gradation and 150 °C preheating followed. 
Typically, 1200 g of each fraction would be needed to create a specimen 
with a height of 63.5±3 mm. The pan is heated to a mixing temperature 
of 150 °C in the oven. To produce a combination with a uniform asphalt 
distribution, the grade 60/70 bitumen was manually mixed with 
aggregate at 150  °C while being prepared for that temperature. The 
compaction hammer is cleaned, the sample moulds are assembled, and 
the mould is preheated to 150 °C. After thoroughly mixing, the asphalt 
mixtures were put into a Marshall mould and compacted with 75 blows 
(top and bottom) of the Marshall hammer. 

1.4.	 Flexure beam test (Flexural Stiffness)

The flexural beam test shows similarities to the field loading 
experienced by pavements in real life. The fatigue resistance of asphalt 
mixtures was determined using the three-point bending beam method 
(AASHTO T 321) in a universal testing machine. The asphalt mixtures 
were compacted to prepare the fatigue test specimens with a dimension 
of 400×100×100  mm. The fatigue test was conducted by placing the 
beams of asphalt mixtures in repetitive three-point loading (using the 
setup shown in Figure  2). Four clamps held the beams in place during 

Figure 2. Beams test setup for three-point load
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the test, and a repeated haversine load was applied to the two inner 
clamps using the loading frequency rate of 10  Hz at 20  °C (because 
fatigue cracking is usually considered an asphalt mixture distress at 
intermediate temperatures). The deflection due to the loading was 
measured at the centre of the specimen. Equations (1) and (2) were 
used to calculate the maximum bending stress, which occurred at the 
centre of the beam for the concentrated load applied at the midpoint. The 
maximum bending stress to maximum bending strain ratio represents 
the mixture stiffness.

	 s=
3

2
2

PL
bh

,	 (1)

where:	s – maximum bending stress in the beam, Mpa;
	 L – span length, mm; 
	 H – thickness of the beam, mm;
	 B – width of the beam, mm;
	 P – load, N.

The maximum bending strain is calculated as follows:

	 ��
6

2

�h
L

,	 (2)

where:	∈� – maximum bending strain in the beam;
	 L – span length, mm;
	 d – deflection of beam, mm;
	 H – thickness of the beam, mm.

1.5.	 Resilient modulus test

The triaxial testing apparatus was used to perform the resilient 
modulus test. The triaxial test apparatus shown in Figure 3 repeatedly 
applied axial cyclic stress to a cylindrical specimen of 38 mm diameter 
and 76  mm high at 25  °C (the most common room temperature in 
Nigeria). A triaxial pressure chamber provided a static confining stress 
in addition to the dynamic cyclic stress applied to the specimen.

1.6.	 Indirect tensile strength test

In line with AASHTO T 322, the test method has been used to evaluate 
the concrete tensile strength. The test was conducted at 25 °C (the most 
common room temperature in Nigeria). The test setup can be seen in 
Figure 4. The measured load value at failure (P), the specimen thickness 
(H), and the specimen diameter (D), all measured in millimeters, are 
utilized to calculate the ITS values (St). 
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Figure 3. Specimen failure in the triaxial testing machine

Figure 4. Specimen under Indirect Tensile Strength test (a) and (b)
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1.7. Direct compression test

Direct compression (DC) test determines the behaviour of materials 
and deformation under crushing statics loads. The test was carried out 
in accordance with ASTM D 1074 (2017). This test was conducted using 
the universal compression apparatus, as depicted in Figure  5. Marshall 
test specimens with a diameter of roughly 100 mm and a height ranging 
from 62 to 69  mm were also used for this test. Before testing, test 
specimens were submerged in a 60 °C water bath for 30  min. Marshall 
specimen was put through a compression test in which the strain rate 
was constant at 10  mm/min (10  mm/min) until failure occurred. The 
maximum load identifies the specimen point of failure. The load needed 
to cause the specimen to fail at 60 °C is noted. The (DC) test values (Sc) 
are calculated using the following equation, which takes into account the 
measured load value at failure (P) in Newton and the specimen diameter 
(D) in mm.

	 S P

D
c

N

mm

� �

�
�

�

�
�

�
2

4

2
	 (4)

Figure 5. Specimen under Universal Testing Machine for compression test
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2.	 Results and discussion

2.1.	 Mechanical properties of steel slag and lime-modified 
asphalt mixtures

Resilient modulus (Mr) and indirect tensile strength (ITS) of asphalt 
mixture materials are frequently used in pavement structural design 
(Zeng et al., 2020). For mechanistic design strategies for asphalt 
structures, Mr is the most crucial variable. According to Zangena (2019), 
it measures how asphalt reacts to dynamic stresses and related strains. 
Figure 6a displays the results of the Mr test. There was no relationship 
between the resilience modulus, the amount of steel slag, and the lime 
content. The mixture mix-5 with 0% steel slag and 0% lime had the 
highest Mr value, whereas mixture mix-7 with 50% steel slag and 2% 
lime had the lowest Mr value. This result contrasts with the study by 
Albayati et al. (2022). In their study, they showed an increase in Mr with 
lime addition. Furthermore, Oluwasola et al. (2015) also showed a rise in 
Mr with steel slag addition.

The indirect tensile strength test offers helpful mixture properties 
when describing bituminous mixes. It is frequently used to assess the 
cracking potential of a bituminous mixture. Mixtures that can withstand 
high ITS values are more likely to be crack-resistant. The tensile strength 
of lime and steel slag-modified asphalt mixes is shown in Figure 6b. The 
ITS of bituminous mixes displayed a similar pattern to Mr. The mix-1 
with 0% steel slag and 2% lime had the greatest ITS value (566.62 Kpa), 
whereas the mix-4 with 100% steel slag and 2% lime had the lowest 
value (233.96  Kpa). The range of tensile strength values published 
by several authors (Likitlersuang & Chompoorat, 2016; Alnadish et 
al., 2022; Alemu et al., 2023), all of whom have reported considerably 
greater tensile strength values, appears to be lower than these values. 
The design of the mixtures can directly link to the most likely reason 
when it comes to material compositions.

A three-point bending fatigue test was performed to assess the 
fatigue performance of the steel-slag and lime-modified asphalt mixture. 
The results are given in Figure  6c. It is observed that the flexural 
stiffness tends to be the highest (2.38 GPa) in mix-1 (0% steel-slag and 
2% lime), while it is the lowest in (1.08 GPa) mix-9 (100% steel-slag with 
4% lime). This modified asphalt mixture could continue to withstand 
fatigue loading. Despite the foregoing, the trend of the stiffness relation 
is unclear because it is more challenging to assess the variations 
between mixtures. The differences in mixture design, including the 
amounts of lime, steel, and binders, may be the cause of the observed 
differences.
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Figure 6d displays the compressive strength values for the asphalt 
mixtures made with lime and steel slag. The strength value of the 
modified asphalt mixtures showed some variance. Mix-4, which 
contained 2% lime and 100% steel slag, had the maximum compressive 
strength at 4.32 N/mm2. According to Gaus et al. (2015), this greater 
strength value shows that the asphalt mixture is more deformation-
resistant to the short-term monotonic compressive stress. Furthermore, 
it can be demonstrated that lime has a favourable impact on the strength 
of the bituminous mixtures by contrasting the compressive strength 
mix-4 with mix-15, which contains 100% steel slag and 0% lime. The 
resistance of bituminous mixes to persistent deformation depends on 
this effect (Iwański, 2020; Singh et al., 2021).

Figure 6. Mechanical properties of steel-slag and lime-modified asphalt 
mixtures

a)

c)

b)

d)

Fl
ex

ur
al

 S
ti

ff
ne

ss
, G

Pa

D
C,

 N
/m

m
2

M
r, 

M
Pa IT

S,
 k

Pa



55

Daniel Oguntayo, 
Olumide Ogundipe, 
Oluwasegun Aluko, 
Olawale Aransiola

Mechanical 
Performance 
of Steel-Slag 
and Lime-Modified 
Asphalt Mixture: 
A Response Surface 
Approach

2.2.	 RSM analysis for the mechanical properties of steel-
slag and lime-modified asphalt mixtures

The relationship trend obtained in the experimental result is unclear 
because assessing the variations between mixtures is more challenging. 
The differences in mixture design, including the amounts of lime, steel, 
and binders, may be the cause of the observed differences. Hence, 
to better understand the contributions of steel slag and lime on the 
mechanical performance of the asphalt mixtures, the RSM analysis was 
conducted, and the results are discussed in the following sections.

2.2.1.	The ANOVA and regression model equations 
for the mechanical properties of steel-slag and lime-
modified asphalt mixtures

The findings of the analysis of variance (ANOVA) for the 
characteristics of mixes made of steel slag and lime-modified asphalt 
are shown in Table  6. Steel-slag was the independent variable with the 
greatest influence and significance on the stiffness property of the 
steel-slag and lime-modified asphalt mixtures, with an F-value of 28.43. 
The bitumen content, on the other hand, was discovered to be the most 
significant and influencing factor among the independent variables 
for the other properties, including the resilient modulus, compressive 
strength, and indirect tensile strength, after showing the F-values of 
1.56, 7.63, and 11.01, respectively. Consecutively, the model F-value of 
9.12, 4.02, 4.77, and 3.71 for stiffness, resilient modulus, compressive 
strength, and indirect tensile strength, respectively, prove the model 
significance. According to Bala et al. (2018), a P>F value of 0.05 typically 
indicates that the model terms are highly significant. The results of 
the stiffness property reveal the significance of factors A, B, and C. 
It shows that the model terms are insignificant for values greater 
than 0.1. An adequate correlation coefficient (R2) of 0.9214, 0.8380, 
0.7412, and 0.8266 was obtained for the responses. The predicted and 
experimental findings exhibit an excellent correlation, as indicated by 
the high correlation coefficient. Additional evidence that the models are 
significant and that the models chosen better suit the experimental data 
is provided by the difference between the adjusted and anticipated R2 for 
the models, which is less than 0.2. In addition, the AP ratios of 11.4614, 
6.0037, 9.7491, and 6.0041 were obtained for all the responses. As 
stated earlier, an AP ratio higher than 4 is acceptable. The second-order 
polynomial model coefficients were generated to suit the experimental 
data (pertaining to mechanical properties). Equations  (5)–(8) provide 
the final regression model equations for essential factors. The stiffness, 
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resilient modulus, compressive strength, and indirect tensile strength 
parameters of the model equation have SD values of 2.91, 78.38, 0.2715, 
and 65.03, respectively. Positive and negative signs precede the equation 
terms to indicate the interactions between the various variables and 
how they positively and negatively affect the responses.

Table 6. ANOVA results for mechanical properties of steel-slag and lime 
modified asphalt mixtures

SoD SoS DoF MS F-value P-value Comment
Flexural Stiffness

Model 695.19 9 77.24 9.12 0.0041 SD = 2.91

A 240.69 1 240.69 28.43 0.0011 Mean = 28.48

B 7.25 1 7.25 0.8565 0.3855 R2 = 0.9214

C 0.0242 1 0.0242 0.0029 0.9588 Adj. R2 = 0.8204

AB 38.45 1 38.45 4.54 0.0706 AP = 11.4614

AC 177.70 1 177.70 20.99 0.0025

BC 12.68 1 12.68 1.50 0.2606

A2 127.19 1 127.19 15.02 0.0061

B2 11.04 1 11.04 1.30 0.2911

C2 75.38 1 75.38 8.90 0.0204

Residual 59.27 7 8.47

Lack of Fit 38.20 3 12.73 2.42 0.2067

Pure Error 21.07 4 5.27

Resilient Modulus (Mr)

Model 2.224E+05 9 24705.72 4.02 0.0400 SD = 78.38

A 9516.48 1 9516.48 1.55 0.2533 Mean = 458.36

B 3837.76 1 3837.76 0.6248 0.4552 R2 = 0.8380

C 9584.20 1 9584.20 1.56 0.2518 Adj. R2 = 0.6296

AB 75605.75 1 75605.75 12.31 0.0099 AP = 6.0043

AC 5246.83 1 5246.83 0.8542 0.3861

BC 11682.37 1 11682.37 1.90 0.2103

A2 92116.79 1 92116.79 15.00 0.0061

B2 400.37 1 400.37 0.0652 0.8058

C2 9548.56 1 9548.56 1.55 0.2526

Residual 42996.58 7 6142.37

Lack of Fit 28192.23 3 9397.41 2.54 0.1948

Pure Error 14808.17 4 3702.04
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SoD SoS DoF MS F-value P-value Comment
DC

Model 2.11 6 0.3517 4.77 0.0150 SD = 0.2715

A 0.1219 1 0.1219 1.65 0.2273 Mean = 3.37

B 0.0486 1 0.0486 0.6591 0.4358 R2 = 0.7412

C 0.5620 1 0.5620 7.63 0.0201 Adj. R2 = 0.5859

AB 0.0117 1 0.0117 0.1583 0.6991 AP = 9.7491

AC 1.36 1 1.36 18.52 0.0016

BC 0.0015 1 0.0015 0.0199 0.8905

Residual 0.7369 10 0.0737

Lack of Fit 0.6339 6 0.1057 4.10 0.0965

Pure Error 0.1030 4 0.0257
Indirect Tensile Strength (ITS)

Model 1.411E+05 9 15680.79 3.71 0.0490 SD = 65.03

A 23180.28 1 23180.28 5.48 0.0518 Mean = 408.52

B 9346.29 1 9346.29 2.21 0.1807 R2 = 0.8266

C 46586.77 1 46586.77 11.01 0.0128 Adj. R2 = 0.6036

AB 27666.38 1 27666.38 6.54 0.0377 AP = 6.0041

AC 9598.29 1 9598.29 2.27 0.1757

BC 1956.33 1 1956.33 0.4625 0.5183

A2 18637.46 1 18637.46 4.41 0.0740

B2 1550.86 1 1550.86 0.3667 0.5639

C2 2526.09 1 2526.09 0.5972 0.4649

Residual 29606.81 7 4229.54

Lack of Fit 6972.03 3 2324.01 0.4107 0.7547

Pure Error 22634.78 4 5658.70

SoD: Source of data; SoS: Sum of squares; DoF: Degree of freedom; MS: mean 
square; SD: standard deviation; R2: Coefficient of determination;  
AP: Adequate precision; Adj. R2: Adjusted coefficient of determination;  
A = Steel slag, B = Lime content, and C = Bitumen content.

Stiffness � � � � � �24 6674 5 48506 0 952109 0 0550533 3 10039. . . . .A B C AB

66 66528 1 78039 5 49618 1 61893 4 23118
2 2 2

. . . . .AC BC A B C� � � �

M A B C AB ACr � � � � � � �2361 76 34 49 21 9025 34 6125 137 482 36 2175

54

. . . . . .

.. . . .0425 147 911 9 75125 47 6213
2 2 2BC A B C� � �

DC A B C AB
A

� � � � � �3 3672 0 123458 0 0779166 0 265042 0 054

0 584083

. . . . .

. CC C�0 0191668.

ITS A B C AB

AC

� � � � � �442 325 53 8288 34 1802 76 3109 83 1661

48 9854

. . . . .

. �� � � �22 1152 66 5312 19 1919 24 4938
2 2 2

. . . .BC A B C

		  (5)

		  (6)

		  (7)

		  (8)
Table 6 contidued
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Figure 8a. Response surface plot of flexural stiffness for steel-slag 
and lime-modified asphalt mixtures

Figure 8b. Response surface plot of Mr for steel-slag and lime-modified 
asphalt mixtures

Figure 8c. Response surface plot of DC for steel-slag and lime-modified 
asphalt mixtures
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2.2.2.	 Surface plots of the mechanical properties of steel slag 
and lime-modified asphalt mixtures

3D and 2D response surface plots for all the responses based on the 
effects of the interactive variables, steel-slag, lime, and bitumen content 
are shown in Figures 8 (a–d). Figure 8a shows the response surfaces for 
the stiffness of the steel slag and lime-modified asphalt mixtures. The 
3D plot curvature indicates that steel slag and lime significantly interact 
with the stiffness. It can be observed that the addition of steel slag 
decreases the stiffness by up to 40% of steel slag and a slight increase in 
the stiffness afterward. Also, it was observed that an increase in the lime 
content increased stiffness. This indicates that lime content influences 
stiffness more remarkably than steel slag.

Figure  8b shows the response surfaces for the resilient modulus 
(Mr) of the steel slag and lime-modified asphalt mixtures. The 3D plot 
curvature indicates that both steel slag and lime have a significant 
interaction effect on the Mr. It can be observed that the addition of steel 
slag results in a slight decrease in the Mr. Also, an increase in the lime 
content resulted in a reduction of the Mr.

The response surfaces for the compressive strength of steel slag and 
lime-modified asphalt mixtures are shown in Figure  8c. The 3D plot 
shows that while the strength slightly decreased as steel slag content 
increased, the strength increased as lime content increased. The 2D 
contour plot for compressive strength demonstrates good interaction 
between all the variables. Figure  8d shows the response surfaces for 
the ITS of the steel slag and lime-modified asphalt mixtures. The 3D 
plot curvature indicates that adding lime content decreases ITS, while 

ITS, kPa

IT
S,

 k
Pa

ITS, kPaITS, kPa

Figure 8d. Response surface plot of ITS for steel-slag and lime-modified 
asphalt mixtures
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an increase in the steel slag increases ITS up to 60% of steel slag and 
decreases afterward. It was further observed that lime content strongly 
influenced ITS more than steel slag.

2.2.3.	 Mix design optimization

Using the RSM optimization tool, design factors were optimized 
in this work, and the accuracy of the created models was evaluated. 
The target aims for each mix design factor (A, B, and C) chosen, as 
given in Table 7 for steel-slag and lime modified, were established. The 
responses were defined as being maximal for excellent performance. 
The optimization findings show that 25.01% steel slag, 2.43% lime, and 
5.51% bitumen contents are the best values to satisfy the design criteria. 
The second experiment was conducted to validate the model predictions 
using the ideal predicted mix design elements. Except for Mr, all of the 
response percentage error differences were less than 5%, as shown 
in Table 8, demonstrating that the established models predicted and 
experimental values agree.

Table 7. Design conditions for optimization

Responses Units Criteria

Flexural Stiffness GPa Maximum range

DC N/mm2 Maximum range

ITS kPa Maximum range

Mr MPa Maximum range

Table 8. Optimum conditions achieved  
for steel-slag and lime-modified asphalt mixtures

Response Unit Predicted Observed Error, %

Flexural Stiffness GPa 1.24 1.21 2.48

Mr MPa 2361.75 2621.57 9.66

DC N/mm2 3.37 3.45 2.31

ITS kPa 442.33 454.26 2.63
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Conclusions and recommendations

Mechanical properties are crucial in determining the structural 
performance of an asphalt mixture. This study evaluated the effects 
of steel slag and lime on the resilient modulus, flexural stiffness, 
compressive strength, and indirect tensile strength of asphalt mixtures. 
The main conclusions of the study are presented below.

−	 There was a variation in the experimental results. The differences 
in mixture design, including the amounts of lime, steel slag, and 
binders, may be the cause of the observed variation.

−	 Lime has a favourable impact on the mechanical strength of 
bituminous mixtures.

−	 Analysis of variance showed that the steel slag was the most 
influencing factor for the flexural stiffness property. 

−	 The regression coefficient (R2) of 0.9214, 0.8380, 0.7412, and 
0.8266 was obtained for the flexural stiffness, Mr, compressive 
strength, and ITS, respectively. 

−	 The surface plots obtained from the RSM analysis gave a better 
understanding of the contributions of the steel slag and lime to the 
mechanical performance of the asphalt mixtures.

−	 This study developed predictive models and identified the optimal 
combination of variables to design the modified asphalt mixtures 
as 25.01% steel slag, 2.43% lime, and 5.51% bitumen content.

−	 The findings of this study will aid in understanding and 
application of steel slag as a sustainable road construction 
material and offer insightful information to researchers and 
engineers involved in the design and development of steel slag and 
lime-modified mixtures.
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