Web-Based Real Time Bridge Scour Monitoring System for Disaster Management

Authors

  • Mirosław Skibniewski Dept of Civil and Environmental Engineering, University of Maryland, 1181 Glenn L. Martin Hall, University of Maryland College Park, MD 20742, United States; Polish Academy of Sciences Institute of Theoretical and Applied Informatics, ul. Bałtycka 5, 44-100 Gliwice
  • Hui-Ping Tserng Dept of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C)
  • Shen-Haw Ju Dept of Civil Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, 10617 Taiwan (R.O.C.)
  • Chung-Wei Feng Dept of Civil Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, 10617 Taiwan (R.O.C.)
  • Chih-Ting Lin Dept of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C)
  • Jen-Yu Han Dept of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C)
  • Kai-Wei Weng Dept of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C)
  • Shu-Chien Hsu Dept of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

DOI:

https://doi.org/10.3846/bjrbe.2014.03

Keywords:

web-based system, real time, bridge monitoring, disaster management

Abstract

Natural disasters such as typhoons, earthquakes, and especially floods, often cause severe damage in Taiwan. Although bridge engineering technology has matured, the lack of an integrated bridge management system under severe disasters remains a challenge for the government. This research aims to develop a web-based system that displays the real time bridge scour information through combining Global Positioning System and Wireless Sensor Networks technologies for bridges. The system also provides early warnings for bridge safety based on a developed genetic model for estimating scour depth around the bridge piers. The bridge safety monitoring agency utilizes the system as a decision support tool to make the maintenance plan for bridges and block the bridges under severe weather conditions to prevent the damages from bridge collapse.

References

Chae, M. J.; Yoo, H. S.; Kim, J. Y.; Cho, M. Y. 2011. Development of a Wireless Sensor Network System for Suspension Bridge Health Monitoring, Automation in Construction 21: 237−252. http://dx.doi.org/10.1016/j.autcon.2011.06.008

Dargahi, B. 1990. Controlling Mechanism of Local Scouring, Journal of Hydraulic Engineering 116(10): 1197−1214. http:// dx.doi.org/10.1061/(ASCE)0733-9429(1990)116:10(1197)

Firat, M.; Gungor, M. 2009. Generalized Regression Neural Networks and Feed Forward Neural Networks for Prediction of Scour Depth Around Bridge Piers, Advances in Engineering Software 40(8): 731−737. http://dx.doi.org/10.1016/j.advengsoft.2008.12.001

Foti, S.; Sabia, D. 2011. Influence of Foundation Scour on the Dynamic Response of an Existing Bridge, Journal of Bridge Engineering 16(2): 295−304. http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0000146

Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. USA: Addison-Wesley, 432 p. ISBN 0201157675.

Guo, J.; Xu, L.; Dai, L.; McDonald, M.; Wu, J.; Li, Y. 2005. Application of the Real-Time Kinematic Global Positioning System in Bridge Safety Monitoring, Journal of Bridge Engineering 10(2): 163−168. http://dx.doi.org/10.1061/(ASCE)1084-0702(2005)10:2(163)

Holland, J. H. 1975. Adaptation in Natural and Artificial Systems. USA: a Bradford Book. 211 p. ISBN 0262581116.

Hoult, N. A.; Fidler P. R. A.; Hill, P. G.; Middleton, C. R. 2010. Long-Term Wireless Structural Health Monitoring of the Ferriby Road Bridge, Journal of Bridge Engineering 15(2): 153−159. http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0000049

Jang, W. S.; Healy, W.; Skibniewski, M. J. 2008. Wireless Sensor Networks as Part of a Web-Based Building Environmental Monitoring System, Automation in Construction 17(6): 729−736. http://dx.doi.org/10.1016/j.autcon.2008.02.001

Johnson, P. A.; Niezgoda, S. L. 2004. Risk-Based Method for Selecting Bridge Scour Countermeasures, Journal of Hydraulic Engineering 130(2) 121−128. http://dx.doi.org/10.1061/(ASCE)0733-9429(2004)130:2(121)

Johnson, P. A.; Dock, D. A. 1998. Probabilistic Bridge Scour Estimates, Journal of Hydraulic Engineering 124(7): 750−754. http://dx.doi.org/10.1061/(ASCE)0733-9429(1998)124:7(750)

Lin, H. R.; Chen, C. S.; Chen, P. Y.; Tsai, F. J.; Huang, J. D.; Li, J. F.; Lin, C. Y.; Wu, W. J. 2010. Design of Wireless Sensor Network and Its Application for Structure Health Monitoring of Cablestayed Bridge, Smart Structures and Systems 6(8): 939−951. http://dx.doi.org/10.12989/sss.2010.6.8.939

Lynch, J. P.; Wang, Y.; Loh, K.; Yi, J. H.; Yun, C. B. 2006. Performance Monitoring of the Geumdang Bridge Using a Dense Network of High-Resolution Wireless Sensors, Smart Materials and Structures 15(6): 1561−1575. http://dx.doi.org/10.1088/0964-1726/15/6/008

Lynch, J. P.; Sundararajan, A.; Law, K. H.; Kiremidjian, A. S.; Carryer, E. 2004. Embedding Damage Detection Algorithms in a Wireless Sensing Unit for Operational Power Efficiency, Smart Materials and Structures 13 (4): 800−810. http://dx.doi.org/10.1088/0964-1726/13/4/018

Melville, B. W.; Coleman, S. E. 2000. Bridge Scour. USA: Water Resources Publications. 572 p. ISBN 1887201181.

Melville, B. W; Raudkivi, A. J. 1996. Effects of Foundation Geometry on Bridge Pier Scour, Journal of Hydraulic Engineering 122(4): 203−209. http://dx.doi.org/10.1061/(ASCE)0733-9429(1996)122:4(203)

Yanmaz, A. M.; Altinbilek, H. D. 1991. Study of Time-Dependent Local Scour around Bridge Piers, Journal of Hydraulic Engineering 117(10): 1247−1268. http://dx.doi.org/10.1061/ (ASCE)0733-9429(1991)117:10(1247)

Downloads

Published

27.03.2014

How to Cite

Skibniewski, M., Tserng, H.-P., Ju, S.-H., Feng, C.-W., Lin, C.-T., Han, J.-Y., Weng, K.-W., & Hsu, S.-C. (2014). Web-Based Real Time Bridge Scour Monitoring System for Disaster Management. The Baltic Journal of Road and Bridge Engineering, 9(1), 17-25. https://doi.org/10.3846/bjrbe.2014.03