Shape Stabilization of Steel Suspension Bridge

Authors

  • Algirdas Juozapaitis Dept of Bridges and Special Structures, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania
  • Arnoldas Norkus Dept of Geotechnical Engineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania
  • Povilas Vainiūnas Dept of Reinforced Concrete and Masonry Structures, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania

DOI:

https://doi.org/10.3846/1822-427X.2008.3.137-144

Keywords:

suspension steel bridge, cable, symmetric and asymmetric loadings, kinematic displacements, elastic displacements, total displacements, bridge, shape stabilization tools

Abstract

Stabilization of primary shape of suspension bridge is one of the governing design problems of the structure. The form, i.e. shape changes of suspension steel bridge, is prescribed more by kinematic vs elastic displacements. Kinematic displacements developed due to asymmetric loadings. Total displacements can be relatively split into kinematic and elastic components. Firstly, kinematic displacements are determined, secondly elastic displacements are evaluated taking into account the shape of cable to be changed. Such a relative splitting of displacements allow an evaluating the contribution of both total displacement components and an employing of the efficient engineering stabilization tools. The developed analytical expressions for determining of total and kinematic displacements for cable any cross are presented. The suspension bridge primary shape stabilization methods and their efficiency are analyzed. It is proposed to introduce the engineering tools for constraining horizontal displacements of suspension cable, resulting not only in reduction of vertical cable displacements, but also in stabilizing of the primary shape of the bridge.

References

Bangash, M. Y. 1999. Prototype bridge structures: analysis and design. London: Thomas Telford Ltd. 1171 p. ISBN 0727727788.

Gimsing, N. J. 1997. Cable suported bridges – concept and design. 2nd edition. Chichester: John Wiley & Sons. 471 p. ISBN 0471969397.

Grigorjeva, T.; Juozapaitis, A.; Kamaitis, Z. 2006. Simplified engineering design method of suspension bridges with rigit cables under action of symmetrical and asymmetrical loads, The Baltic Journal of Road and Bridge Engineering 1(1): 11–20.

Jennings, A. 1987. Deflection theory analysis of different cable profiles for suspension bridges, Eng. Structures 9: 84–94.

Juozapaitis, A.; Norkus, A. 2004. Displacement analysis of assymetrical loaded cable, Journal of Civil Engineering and Management 10(4): 277–284.

Juozapaitis, A.; Norkus, A. 2007. Determination of rational parameters for the advanced structure of a pedestrian suspension steel bridge, The Baltic Journal of Road and Bridge Engineering 2(4): 173–181.

Juozapaitis, A.; Norkus, A.; Grigorjeva, T. 2005. Numerical modelling of suspension cable kinematic displacements, Mechanika 6(55): 43–49.

Kala, Z. 2007. Influence of partial safety factors on design reliability of steel structures – probability and fuzzy probability assessments, Journal of Civil Engineering and Management 13(4): 291–296.

Kala, Z. 2008. Fuzzy probability analysis of the fatigue resistance of steel structural members under bending, Journal of Civil Engineering and Management 14(1): 67–72.

Krishna, P. 2001. Tension roofs and bridges, Journal of Constructional Steel Research 57(11): 1123–1140.

Kulbach, V. 1999. Half-span loading of cable structures, Journal of Constructional Steel Research 49(2): 167–180.

Kulbach, V. 2007. Cable structures. Design and static analysis. Tallin: Estonian Academy Publishers. 224 p. ISBN 9789985503966.

Lewis W. 2003. Tension structures: form and behavior. London: Thomas Telford Ltd. 256 p. ISBN 0727732366.

Palkowski, Sz. 2006. Some problem of calculation and design of cable structures, in Proc of the 11th International Conference on Metal Structures (ICMS-2006) “Progress in Steel, Composite and Aluminium Structures”. Ed. by Gižejowski, M.; Kozlovski, A.; Slęczka, L.; Ziolko, J. June 21–23, 2006, Rzeszow, Poland. London: Taylor and Francis, 102–116.

Petersen, Ch. 1993. Stahlbau. Grundlagen der Berechnung und bauliches Ausbildung von Stahlbauten [Structures. Analysis of fundamentals and professional training in field of steel structures]. Braunschweig, Wiesbaden: Vieweg. 1451 S. ISBN 352828837X.

Ryall, M. J.; Parke, G. A. R; Harding, J. E. 2000. Manual of bridges engineering. London: Tomas Telford Ltd. 1007 p. ISBN 0727727745.

Troyano L. F. 2003. Bridge engineering. A global perspective. London: Tomas Telford Ltd. 775 p. ISBN 0727732153.

Walter, R.; Houriet, B.; Isler, W.; Moïa, P.; Klein, J. F. 1999. Cable stayed bridges. 2nd edition. London: Tomas Telford. 320 p. ISBN 9780727727732.

Беленя, Е. И. и др. 1991. Металлические конструкции. Специальный курс [Belenia, E. I. et al. Steel structures. Special course]. Moсква: Стройиздат. 687 с. ISBN 5274010954.

Качурин, В; Брагин, А.; Ерунов, Б. 1971. Проектирование висячих и вантовых мостов [Katchurin, V.; Bragin, A.; Erunov, B. Design of suspension and cable-stayed bridges]. Moсква: Транспорт. 280 с.

Михайлов, В. 2002. Предварительно напряженные комбинированные и вантовые конструкции [Michailov, V. Prestressed combined bars and cables structures]. Moсква: ACB. 256 с. ISBN 5930931372.

Москалев, Н. С.; Попова, Р. А. 2003. Стальные конструкции легких зданий [Moskalev, N. S.; Popova R. A. Steel structures of light-weight buildings]. Moсква: ACB. 216 c. ISBN 5930932026.

Downloads

Published

27.09.2008

How to Cite

Juozapaitis, A., Norkus, A., & Vainiūnas, P. (2008). Shape Stabilization of Steel Suspension Bridge. The Baltic Journal of Road and Bridge Engineering, 3(3), 137-144. https://doi.org/10.3846/1822-427X.2008.3.137-144