Necessary Measures for Ensuring the Quality of Hot Mix Asphalt in Lithuania

Kazys Petkevičius, Henrikas Sivilevičius


It was determined that poor quality of asphalt concrete is the main cause (65 %) of early fatigue cracking of asphalt concrete pavement of roads in Lithuania and neighbouring countries with similar climatic conditions. The poor quality of asphalt concrete is mainly predetermined by production errors of hot mix asphalt (HMA) and designed suboptimal mass ratio of constituents. The development of theoretical principles for producing the best componential composition of asphalt concrete is highlighted. Optimal values of the portions of coarse aggregate, fine aggregate, filler and bitumen recommended by different authors are given. The main causes of deviations from the optimal composition of HMA produced by asphalt asphalt mix plants of different generations are systematised. The dynamics of rapid cracking of asphalt concrete paving of Lithuanian roads is shown emphasising the inadequacy of HMA structure and properties to increased traffic intensity and axial workloads. The permissible values of asphalt concrete components, optimal under the actual climate and traffic conditions, ensuring highest asphalt concrete resistance to fatigue and rational (8–9 years) service life, during which the cracked pavement area does not exceed 8 %, are proposed. A quality assurance method has been developed based on mathematical statistical methods. It helps avoid deviations of component proportions, occurring in the process of production, from the project proportion and to increase the homogeneity of the product.


hot mix asphalt (HMA); road pavement construction (RPC); asphalt mix (batch type) plant (AMP); quality assurance; componential composition; production quality; homogeneity

Full Text:



Бункин, И. Ф. 2002. Автоматизация управления производством асфальтобетонов [Bunkin, J. F. Automatic control of asphalt concrete production]: реферат докторской диссертации. Москва.

Butkevičius, S.; Petkevičius, K.; Kamaitis, I. Z. 2007. Evaluation of flexible road pavement conctruction state using objective strength sriteria, The Baltic Journal of Road and Bridge Engineering 2(2): 61–66.

Jones, L. 1986. Recent developments in coating plant technology, Quarry Management 13(10): 25–30.

Kanitpong, K.; Bahia, H.; Russell, J.; Schmitt, R. 2005. Predicting field permeability from testing hot-mix asphalt specimens produced by superpave gyratory compactor, Transportation Research Record 1929: 52–58.

Laurinavičius, A.; Oginskas, R. 2006. Experimental research on the development of rutting in asphalt concrete pavements reinforced with geosynthetic materials, Journal of Civil Engineering and Management 13(4): 311–317.

Mallick, R. B.; Brown, E. R. 1999. Development of a method for early prediction of the asphalt content of hot-mix asphalt by ignition test, Transportation Research Record 1654: 61–69.

Markauskas, D.; Kačianauskas, R. 2006. Compacting of particles biaxial compression test by the discrete element method, Journal of Civil Engineering and Management 12(2): 193–200.

Parker, Jr. F; Hossain, M. S.; Song, J. 2000. Analysis of quality control and quality assurance data for superpave mixes, Transportation Research Record 1712: 25–34.

Petkevičius, K.; Christauskas, J. 2006. Asphalt concrete quality assurance during production, The Baltic Journal of Road and Bridge Engineering 1(3): 151–156.

Петкявичюс, K.; Подагелис, И. 2005. Оптимизация состава асфальтобетона для дорожных покрытий автомагистралей с учетом свойств исходных материалов [Petkevičius, K.; Podagelis, I. Optimisation of motorway asphalt concrete pavement composition taking account of characteristics of primary materials], Труды БГТУ. Серия 2. Лесная и деревообрабатывающая промышленность [Works of BGTU. Forest and Wood Processing Industry 2], Минск 13: 84–88.

Petkevičius, K.; Sivilevičius, H. 2000. Automobilių kelių asfaltbetonio dangos ir jos konstrukcijos reikiamos savybės ir racionali funkcionavimo trukmė [Required properties of road asphalt concrete pavement and its rational service life], Transportas [Transport Engineering] 15(4): 184–195.

Roberts, F. L.; Mohammad, L. N.; Wang, L. B. 2002. History of hot mix asphalt mixture design in the United States, Journal of Materials in Civil Engineering 14(4): 279–294.

Samynoureldin, A. 1997. Quantifying effect of pavement performance charateristics using partial derivatives, Transportation Research Record 1575: 75–84.

Sivilevičius, H. 2002. Asfaltbetonio maišytuvo kokybės kompleksinio vertinimo kriterijų pagrindimas ir metodikos taikymas praktikoje [Substantiation of complex evaluation criteria of asphalt paving plant quality and application of methodology in practice], Journal of Civil Engineering and Management 8 (supplement 2): 112–125.

Sivilevičius, H. 2005. The analysis of the new asphalt concrete mixing plant batchers and their smart control systems, in Proc of the 6th International Conference of Environmental Engineering, 26–27 May, 2005, Vilnius, Lithuania, 775–782.

Sivilevičius, H.; Petkevičius, K. 2002. Regularities of development in the asphalt concrete pavement, Journal of Civil Engineering and Management 8(3): 206–213.

Šiaudinis, G.; Čygas, D. 2007. Determination of seasonal effects on the structural strength of asphalt pavements, The Baltic Journal of Road and Bridge Engineering 2(2): 67–72.

White, G. C.; Mahoney, J. P.; Turkiyyah, G. M.; Willoughby, K. A.; Brown, E. R. 2002. Online tools for hot-mix asphalt monitoring, Transportation Research Record 1813: 124–130.

Ziari, H.; Khabiri, M. M. 2007. Interface condition influence on prediction of flexible pavement life, Journal of Civil Engineering and Management 13(1): 71–76.


  • There are currently no refbacks.

Copyright (c) 2008 Vilnius Gediminas Technical University (VGTU) Press Technika