Evaluation of Soil Shear Strength Parameters Via Triaxial Testing by Height Versus Diameter Ratio of Sample

Jonas Amšiejus, Neringa Dirgėlienė, Arnoldas Norkus, Daiva Žilionienė

Abstract


The triaxial test is a most widely used laboratory method for determining the soil shear strength. It is assumed that a soil sample deforms uniformly during triaxial testing. But one often faces a case when the sample in the triaxial apparatus deforms on the contrary. The non-uniformity can be caused by the end restraining effect, the sample height influence factor, the insufficient drainage, the membrane effect and the sample self-weight factor etc. An analysis of known investigations lead to the following tools that could be employed for reducing an inaccuracy related to the non-uniform stress-strain distribution per soil sample during triaxial testing: reducing the sample height/diameter ratio from 2 to 1, eliminating the friction between the sample ends and the plates. Having not eliminated the above - mentioned influence, factors during the testing procedure the angle of internal friction φ and the cohesion c for the sample of φ ≠ 0 are determined larger than the actual ones. The method for determining the angle of internal friction φ and the cohesion c, when testing the soil sample of height/diameter H/D = 1 is proposed.


Keywords:

triaxial testing; soil shear strength parameters; angle of internal friction; cohesion; height/diameter ratio of sample

Full Text:

PDF

References


Airey, D. W. 1991. Finite element analyses of triaxial tests with different end and drainage conditions, in Proc of the 7th International Conference on Computer Methods and Advances in Geomechanics, Cairns, Australia, 1991. Balkema: Rotterdam, 225–230.

Amšiejus, J.; Dirgėlienė, N. 2007. Probabilistic assesment of soil shear strength parameters using triaxial test results, The Baltic Journal of Road and Bridge Engineering 2(3): 125–131.

Dirgėlienė, N.; Amšiejus, J.; Stragys, V. 2007. Effect of ends restraint on soil shear strength parameters during triaxial testing, in Polish-Ukrainian-Lithuanian Transactions of Theoretical Foundations of Civil Engineering. Ed. by Szczesniak, 2007, Warsaw, Poland. Warszawa: Wydawnictwo Politechniki Warszawskiej, 151–156.

Dirgėlienė, N.; Amšiejus, J.; Stragys, V. 2007. Effects of end conditions on soil shear strength parameters during triaxial testing, in Proc of the 9th International Conference “Modern Building Materials, Structures and Techniques”: selected papers, vol. 2. Ed. by M. J. Skibniewski, P. Vainiūnas, E. K. Zavadskas. May 16–18, 2007, Vilnius, Lithuania. Vilnius: Technika, 1120–1125.

Head, K. H. 1986. Manual of Soil Laboratory Testing, vol. 3. Effective Stress Tests. London: Pentech Press, 743–1238. ISBN 0-7273-1306-1.

Hettler, A.; Gudehus, G. 1985. Discussion, Soils and Foundations 25(3): 140–141.

Hinokio, M.; Nakai, T. 2005. Numerical analysis of localized deformations in clay specimens using subloading tij model, in Proc of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, September 12–16, 2005. Rotterdam: Millpress, 909–912.

Jeremic, B.; Yang, Z.; Sture, S. 2004. Numerical assessment of the influence of end conditions on constitutive behaviour of geomaterials, Journal of Engineering Mechanic 130(6): 741–745. DOI: 10.1061/(ASCE)0733-9399(2004)130:6(741)

Juknevičiūtė, L.; Laurinavičius, A. 2008. Analysis and evaluation of depth of frozen ground affected by road climatic conditions, The Baltic Journal of Road and Bridge Engineering 3(4): 226–232. DOI: 10.3846/1822-427X.2008.3.226-232

Lade, P. V.; Prabucki, M.-J. 1995. Softening and preshearing effects in sand, Soils and Foundations 35(4): 93–104.

Lade, P. V.; Wasif, U. 1988. Effects of height-to-diameter ratio in triaxial specimens on the behaviour of cross-anisotropic sand, in Advanced Triaxial testing of Soil and Rock. Ed. by R. T. Donaghe, R. C. Chaney, M. L. Silver. 1988, Philadelphia, USA. Philadelphia: ASTM STP 977, 706–714.

Liyanapathirana, D. S.; Carter, J. P.; Airey, D. W. 2005. Numerical modeling of nonhomogeneous behavior of structured soils during triaxial tests, International Journal of Geomechanics 5(1): 10–23. DOI: 10.1061/(ASCE)1532-3641(2005)5:1(10)

Peric, D.; Su, S. 2005. Influence of the end friction on the response of triaxial and plane strain clay samples, in Proc of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, 12–16 September, 2005. Rotterdam: Millpress, 571–574.

Sheng, D.; Westerberg, B.; Mattsson, H.; Axelsson, K. 1997. Effects of end restraint and strain rate in triaxial tests, Computers and Geotechnics 21(3): 163–182. DOI: 10.1016/S0266-352X(97)00021-9

Vervečkaitė, N. 2004. Įtempimų būvio bandinyje, tiriant gruntą stabilometru, tyrimas [Analysis of stress distribution of soil specimen using triaxial compression test], in Statybos inžinerija [Civil engineering]: 7-osios Lietuvos jaunųjų mokslininkų konferencijos “Lietuva be mokslo – Lietuva be ateities”, įvykusios Vilniuje 2004 m. kovo 25–26 d., pranešimų medžiaga. Vilnius: Technika, 332–337.

Vervečkaitė, N.; Amšiejus, J.; Stragys, V. 2007. Stress-strain analysis in the soil sample during laboratory testing, Journal of Civil Engineering and Management 13(1): 63–70.

Ždankus, N. T.; Stelmokaitis, G. 2008. Clay slope stability computations, Journal of Civil Engineering and Management 14(3): 207–212. DOI: 10.3846/1392-3730.2008.14.18




DOI: 10.3846/1822-427X.2009.4.54-60

Refbacks

  • There are currently no refbacks.


Copyright (c) 2009 Vilnius Gediminas Technical University (VGTU) Press Technika