Investigation of the Sand Porosity via Oedometric Testing

Authors

  • Jonas Amšiejus Dept of Geotechnical Engineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania
  • Rimantas Kačianauskas Dept of Strength of Materials, Vilnius Gediminas Technical University, Saulėtekio al.11, 10223 Vilnius, Lithuania
  • Arnoldas Norkus Dept of Geotechnical Engineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania
  • Liudas Tumonis Dept of Geotechnical Engineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania

DOI:

https://doi.org/10.3846/bjrbe.2010.20

Keywords:

sand, oedometer test, void ratio, discrete element method (DEM), spherical particles

Abstract

Investigation of the porosity of Klaipėda sand by oedometric test is presented. The Klaipėda sand is typical Baltic see-shore sand consisting of grains the average diameter of which varies from 1.18 mm to 0.3 mm. Variation of the porosity during oedometric compression of the whole mixture of the sand and of three separate fractions were investigated experimentally. Porosity was characterised by the maximal (initial) and minimal (after compression) values of the void ratio. It was proved experimentally that porosity of the sand mixture is practically predicted by the coarse-grained fraction with grain diameters ranging between 1.18 mm and 0.6 mm. The role of microstucture in the densification mechanism is explained by employing the discrete element method simulations. The spherical particles and commercial EDEM code were used for modelling purposes. Discrete element method simulations confirmed generally the macroscopic experimental results and yielded additional data on microscopic behaviour. The non-smooth deformation behaviour was observed during detailed numerical time-history analysis. The detected instabilities are explained by rearrangement of the sand grains.

References

Allen, M. P.; Tildesley, D. J. 1987. Computer Simulation of Liquids. Oxford Science Publication. 408 p. ISBN: 0198556454

Amšiejus, J.; Dirgėlienė, N.; Norkus, A.; Žilionienė, D. 2009. Evaluation of Soil Strength Parameters via Triaxial Testing by Height versus Diameter Ratio of Sample, The Baltic Journal of Road and Bridge Engineering 4(2): 54–60. doi:10.3846/1822-427X.2009.4.54-60

Amšiejus, J.; Dirgėlienė, N. 2007. Probabilistic Assessment of Soil Shear Strength Parameters Using Triaxial Test Results, The Baltic Journal of Road and Bridge Engineering 2(3): 125–131.

Atkinson, J. H.; Clayton, C. R. I.; Head, K. H.; Ananostopoulos, A. G.; Bonnechere, F. 1997. Incremental Loading Oedometer Test. Document number: ETC5-D1.97.

Balevičius, R.; Džiugys, A.; Kačianauskas, R.; Maknickas, A.; Vislavičius, K. 2006. Investigation of Performance of Programming Approaches and Languages Used for Numerical Simulation of Granular Material by the Discrete Element Method, Computer Physics Communications 175(6): 404–415. doi:10.1016/j.cpc.2006.05.006

Belheine, N.; Plassiard, J. P.; Donzé, F. V.; Darve, F.; Seridi, A. 2009. Numerical Simulation of Drained Triaxial Test Using 3D Discrete Element Modeling, Computers and Geotechnics 36(1–2): 320–331. doi:10.1016/j.compgeo.2008.02.003

Cundall, P. A.; Strack, O. D. L. 1979. A Discrete Numerical Model for Granular Assemblies, Geotechnique 29(1): 47–65. doi:10.1680/geot.1979.29.1.47

Džiugys, A.; Peters, B. 2001. An Approach to Simulate the Motion of Spherical and Non-Spherical Fuel Particles in Combustion Chambers, Granular Material 3(4): 231–266. doi:10.1007/PL00010918

Fredlund, D. G.; Rahardjo, H. 1993. Soil Mechanics for Unsaturated Soils. Wiley-Interscience. 544 p. ISBN: 047185008X

Head, K. H. 1986. Manual of Soil Laboratory Testing, vol. 3. Effective Stress Tests. 2nd edition. London: Pentech Press, 422 p. ISBN-10: 0471977950

Horváth, V. K.; Jánosi, I. M.; Vella, P. J. 1996. Anomalous Density Dependence of Static Friction in Sand, Physical Review E 54(2): 2005–2009. doi:10.1103/PhysRevE.54.2005

Iwashita, K.; Oda, M. 2000. Micro-Deformation Mechanism of Shear Banding Process Based on Modified Distinct Element Method, Powder Technology 109(1–3): 192–205. doi:10.1016/S0032-5910(99)00236-3

Juknevičiūtė, L.; Laurinavičius, A. 2008. Analysis and Evaluation of Depth of Frozen Ground Aff ected by Road Climatic Conditions, The Baltic Journal of Road and Bridge Engineering 4(3): 226–232. doi:10.3846/1822-427X.2008.3.226-232

Kačianauskas, R.; Maknickas, A.; Kačeniauskas, A.; Markauskas, D.; Balevičius, R. 2010. Parallel Discrete Element Simulation of Polydispersed Granular Material, Advances in Engineering Software 41(1): 52–63. doi:10.1016/j.advengsoft .2008.12.004

Kruggel-Emden, H.; Simsek, E.; Rickelt, S.; Wirtz, S.; Scherer, V. 2007. Review and Extension of Normal Force Models for the Discrete Element Method, Powder Technology 171(3): 157–173. doi:10.1016/j.powtec.2006.10.004

Lade, P. V.; Prabucki, M. -J. 1995. Soft ening and Preshearing Effects in Sand, Soils and Foundations 35(4): 93–104.

Lade, P. V.; Wasif, U. 1988. Eff ects of Height-to-Diameter Ratio in Triaxial Specimens on the Behaviour of Cross-Anisotropic Sand, Advanced Triaxial testing of Soil and Rock. 1988, Philadelphia, USA. Philadelphia: ASTM STP 977, 706–714.

Marketos, G.; Bolton, M. D. 2010. Flat Boundaries and their Effect on Sand Testing, International Journal for Numerical and Analytical Methods in Geomechanics 34(8): 821–837. doi:10.1002/nag.835

Mitchell, J. K. 1993. Fundamentals of Soil Behaviour. 2nd edition. J. Wiley & Sons. 456 p. ISBN: 0471856401

Mueller, G. E. 2005. Numerically Packing Spheres in Cylinders, Powder Technology 159(2): 105–110. doi:10.1016/j.powtec.2005.06.002

Murthy, V. N. S. 2002. Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering. CRC Press. 1056 p. ISBN: 0824708733

Oquendo, W. F.; Muñoza, J. D.; Lizcano, A. 2009. Oedometric Test, Bauer’s Law and the Micro-Macro Connection for a Dry Sand, Computer Physics Communications 180(4): 616–620. doi:10.1016/j.cpc.2009.01.002

Ortigao, J. A. R. 1995. Soil Mechanics in the Light of Critical State Th eories. Taylor & Francis. 160 p. ISBN: 9054101954

Peric, D.; Su, S. 2005. Infl uence of the End Friction on the Response of Triaxial and Plane Strain Clay Samples, in Proc of the 16th International Conference on Soil Mechanics and Geotechnical Engineering. 12–16 September, 2005, Osaka, Japan. Rotterdam: Millpress, 571–574.

Pöschel, T.; Schwager, T. 2004. Computational Granular Dynamics: Models and Algorithms. Berlin: Springer. 322 p. ISBN: 3540214852

Raji, A. O.; Favier, J. F. 2004. Model for the Deformation in Agricultural and Food Particulate Materials under Bulk Compressive Loading Using Discrete Element Method. I: Theory, Model Development and Validation, Journal of Food Engineering 64(3): 359–371. doi:10.1016/j.jfoodeng.2003.11.004

Rojek, J.; Zarate, F.; de Saracibar, C. A.; Gilbourne, C.; Verdot, P. 2005. Discrete Element Modelling and Simulation of Sand Mould Manufacture for the Lost Foam Process, International Journal for Numerical Methods in Engineering 62(11): 1421–1441. doi:10.1002/nme.1221

Terzaghi, K.; Peck, R. B.; Mesri, G. 1996. Soil Mechanics in Engineering Practice. 3th edition. NY: John Wiley & Sons. 592 p. ISBN: 0471086584

Tsuji, Y.; Tanaka, T.; Ishida, T. 1992. Lagrangian Numerical Simulation of Plug of Cohesionless Particles in a Horizontal Pipe, Powder Technology 71(3): 239–250. doi:10.1016/0032-5910(92)88030-L

Vervečkaitė, N.; Amšiejus, J.; Stragys, V. 2007. Stress-Strain Analysis in the Soil Sample during Laboratory Testing, Journal of Civil Engineering and Management 13(1): 63–70.

Wang, D.; Wang, Y.; Yang, B.; Zhang, W. 2008. Statistical Analysis of Sand Grain/Bed Collision Process Recorded by High-Speed Digital Camera, Sedimentology 55(2): 461–470. doi:10.1111/j.1365-3091.2007.00909.x

Yan, G.; Yu, H.-S.; McDowell, G. 2009. Simulation of Granular Material Behaviour Using DEM, Procedia Earth and Planetary Science 1(1): 598–605. doi:10.1016/j.proeps.2009.09.095

Zhu, H. P.; Zhou, Z. Y.; Yang, R. Y.; Yu, A. B. 2008. Discrete Particle Simulation of Particulate Systems: A Review of Major Applications and Findings, Chemical Engineering Science 63(23): 5728–5770. doi:10.1016/j.ces.2008.08.006

Zhu, H. P.; Zhou, Z. Y.; Yang, R. Y.; Yu, A. B. 2007. Discrete Particle Simulation of Particulate Systems: Th eoretical Developments, Chemical Engineering Science 62: 3378–3392.

Ždankus, N. T.; Stelmokaitis, G. 2008. Clay Slope Stability Computations, Journal of Civil Engineering and Management 14(3): 207–212. doi:10.3846/1392-3730.2008.14.18

Downloads

Published

27.09.2010

How to Cite

Amšiejus, J., Kačianauskas, R., Norkus, A., & Tumonis, L. (2010). Investigation of the Sand Porosity via Oedometric Testing. The Baltic Journal of Road and Bridge Engineering, 5(3), 139-147. https://doi.org/10.3846/bjrbe.2010.20