Calculation Model for Steel Fibre Reinforced Concrete Punching Zones of Bridge Superstructure and Foundation Slabs

Gediminas Marčiukaitis, Remigijus Šalna, Bronius Jonaitis, Juozas Valivonis


The usage of steel fibre reinforced concrete in monolithic joins is well known as a good alternative of additional reinforcement because of chaotic distribution of steel fibres in complex stress ant strain state. Unfortunately, the analysis of well known design codes and different models even in punching case without steel fibres shows that there is no common theory in calculating punching shear strength. Existing models of punching shear strength with steel fibres are mainly based on empirical coefficients, or require direct tests, what makes the design of such structures more complicated. Besides, the analysis of elastic and plastic characteristics of steel fibre reinforced concrete is incomplete, because there is no unified, well-grounded theory to evaluate them. The aim of this paper is to present steel fibre reinforced concrete punching shear strength model. Suggested steel fibres reinforced concrete punching shear strength model estimates the main factors, such as concrete strength, longitudinal reinforcement, steel fibres volume, type, geometric and anchoring characteristics, and also plastic strains of steel fibre reinforced concrete. The comparison of suggested model with tests results demonstrates good accuracy of the suggested model for steel fibre reinforced concrete slabs (mean value – 1.12, standard deviation – 0.08 coefficient of variation – 7%).


punching shear strength; steel fibres; reinforced concrete; plastic strains; complex stress and strain state

Full Text:



Baikovs, A.; Rocēns, K. 2010. Prediction of the Anticlastic Shape Changes of Hybrid Composite Material, Journal of Civil Engineering and Management 16(2): 222–229. doi:10.3846/jcem.2010.25

Broms, C. E. 1990. Punching of Flat Plates – a Question of Concrete Properties in Biaxial Compression and Size Effect, ACI Structural Journal 87(3): 292–304.

Choi, K. K.; Park, H. G.; Wight, K. J. 2007. Unified Shear Strength Model for Reinforced Concrete Beams – Part I: Development, ACI Structural Journal 104(2): 142–152.

Georgopoulos, T. 1989. Durchstanzlast und Durchstanzwinkel Punkforming Gestutzter Stahlbetonplatten ohne Schubbewehrung [Punching Force and Punching Angle of a Flat Slabs without Shear Reinforcement], Bauingenieur [Civil Engineering] 64: 187–191.

Hallgren, M. 1996. Punching Shear Capacity of Reinforced High Strength Concrete Slabs. PhD thesis. Stockholm: Royal Institute of Technology. 206 p.

Harajli, M. H.; Maalouf, D.; Khatib, H. 1995. Effect of Fibres on the Punching Shear Strength of Slab-Column Connections, Cement and Concrete Composites 17(2): 161–170. doi:10.1016/0958-9465(94)00031-S

Kutzing, L.; Koning, G. 2000. Punching Behaviour of High Performance Concrete Columns with Fibre Cocktails, Lacer 5: 253–260.

Maalej, M.; Li, V. C. 1994. Flexural/Tensile Strength Ratio in Engineered Cementitious Composite, Journal of Materials in Civil Engineering 6(4): 513–528. doi:10.1061/(ASCE)0899-1561(1994)6:4(513)

Menétrey, Ph. 2002. Synthesis of Punching Failure in Reinforced Concrete, Cement and Concrete Composites 24(6): 497–507. doi:10.1016/S0958-9465(01)00066-X

Sharma, A. K. 1986. Shear Strength of Steel Fibres Reinforced beams, ACI Journal Proceedings 83(4): 624–628.

Shertwood, E. G.; Bentz, E. C.; Collins, M. P. 2007. Effect of Aggregate Size on Beam-Shear Strength of Thick Slabs, ACI Structural Journal 104(2): 180–190.

Swamy, R. N.; Ali, S. 1982. Punching Shear Behavior of Reinforced Slab-Column Connections Made with Steel Fiber Concrete, ACI Journal 79(5): 392–406.

Szmigiera, E. 2007. Influence of Concrete and Fibre Concrete on the Load-Carrying Capacity and Deformability of Composite Steel-Concrete Columns, Journal of Civil Engineering and Management 13(1): 55–61. doi:10.1080/13923730.2007.9636419

Šalna, R.; Marčiukaitis, G. 2007. The Influence of Shear Span Ratio on Load Capacity of Fibre Reinforced Concrete Elements with Various Steel Fibre Volumes, Journal of Civil Engineering and Management 13(3): 209–215. doi:10.1080/13923730.2007.9636439

Šalna, R.; Marčiukaitis, G.; Vainiūnas, P. 2004. Estimation of Factors Influencing Punching Shear Strength of RC Floor Slabs, Journal of Civil Engineering and Management 10(Suppl 2): 137–142.

Theodorakopoulos, D. D.; Swamy, R. N. 2002. Ultimate Punching Shear Strength Analysis of Slab–Column Connections, Cement and Concrete Composites 24(6): 509–521. doi:10.1016/S0958-9465(01)00067-1

Tuchlinski, D. 2004. Zum Durchstanzen von Flachdecken unter Berücksichtigung der Momenten-Querkraft-Interaktion und der Vorspannung [Punching of Flat Slabs Considering Moment-Shear Interaction and Prestressing]. PhD. Lehrstuhl und Institut für Massivbau, RWTH Aachen, 2005. 149 p.

Urban, T. 1984. Badania żelbetowych złączy płytowo-słupowych z dodatkiem drutu ciętego w strefie przysłupowej [Tests of Reinforced Concrete Slab-Pole Connectors with Wire Cut in the Punching Zone], Inżineria i Budownictwo [Engineering and Constructions] 10: 390–393.

Zink, M. 1999. Zum Biegeschubversagen schlanker bauteile aus hochleistungsbeton mit und ohne schubbewehrung [Bending to Shear Failure of Slender Components of High Performance Concrete with and Without Shear Reinforcement]. PhD. Universitat Leipcig. 172 p.

Рабино вич , Ф. Н. 2004. Композиты на основе дисперсно-армированных бетонов. Вопросы теории и проектирования, технология, конструкции: Моног рафия. [Rabinovic, F. N. Composite Structures, Based on Fibre Reinforcement. The Questions of Theory, Design, Technology and Structures]. Москва: АСВ. 506 с.

DOI: 10.3846/bjrbe.2011.25


  • There are currently no refbacks.

Copyright (c) 2011 Vilnius Gediminas Technical University (VGTU) Press Technika