Optimization of Bridge Trusses Height and Bars Cross-Sections

Stanislovas Kalanta, Juozas Atkočiūnas, Tomas Ulitinas, Andrius Grigusevičius


The problems of optimal design of truss-type structures, aimed at determining the minimal volume (weight) of the structure, while optimizing the bar cross-sections and the truss height, are considered. The considered problem is treated as a nonlinear problem of discrete optimization. In addition to the internal forces of tension or compression, the elements of the truss can have the bending moments. The cross-sections of the bars are designed of the rolled steel profiles. The mathematical models of the problem are developed, taking into account stiffness and stability requirements to structures. Nonlinear discrete optimization problems, formulated in this paper, are solved by the iterative method using the mathematical programming environment MATLAB. The buckling ratios of the bars under compression are adjusted in each iteration. The requirements of cross-section assortment (discretion) are secured using the method of branch and bound.


elastic truss bar structures; discrete optimization; finite element method; nonlinear optimization problem

Full Text:



Atkočiūnas, J.; Venskus, A. 2011. Optimal Shakedown Design of Frame under Stability Condition According to Standards, Computer & Structures 3–4(89): 435–443. http://dx.doi.org/10.1016/j.compstruc.2010.11.014

Feng, F. Z.; Kim, Y. H.; Yang, B.-S. 2006. Application of Hybrid Optimization Techniques for Model Updating of Rotor Shafts, Structural and Multidisciplinary Optimization 32(1): 67–75. http://dx.doi.org/10.1007/s00158-006-0003-4

Goremikins, V.; Serdjuks, D. 2010. Rational Structure of Trussed Beam, in The 10th International Conference “Modern Building Materials, Structures and Techniques”: selected papers. Ed. by Vainiūnas, P.; Zavadskas, E. K. May 19–21, 2010, Vilnius, Lithuania. Vilnius: Technika, 513–518.

Gutkowski, W. 1997. Discrete Structural Optimization. Springer-Verlag. 250 p.

Hayalioglu, M. S.; Degertekin, S. O. 2004. Design of Non-Linear Steel Frames for Stress and Displacement Constraints with Semi-Rigid Connections via Genetic Optimization, Structural and Multidisciplinary Optimization 27(4): 259–271. http://dx.doi.org/10.1007/s00158-003-0357-9

Hayalioglu, M. S. 2000. Optimum Design of Geometrically Non-Linear Elastic-Plastic Steel Frames Via Genetic Algorithm, Computers & Structures 77(5): 527–538. http://dx.doi.org/10.1016/S0045-7949(99)00221-7

Haug, E. J.; Arora, J. S. 1980. Applied Optimal Design: Mechanical and Structural Systems. New York: John Wiley & Sons. ISBN 047104170X.

Hyberyan, К. М. 1960. Usiliia v staticheski neopredelimoj ferme, otvechaiushchej naimenshemu ee vesu v raschiote na mnogie zagruzheniia, Izvestiia AN SSSR, OTN. Mekhanika i mashinostroenie, No. 3.

Kala, Z.; Puklický, L.; Omishore, A.; Karmazínová, M.; Melcher, J. 2010. Stability Problems of Steel-Concrete Members Composed of High-Strength Materials, Journal of Civil Engineering and Management 16(3): 352–362. http://dx.doi.org/10.3846/jcem.2010.40

Kalanta, S.; Atkočiūnas, J.; Venskus, A. 2009. Discrete Optimization Problems of the Steel Bar Structures, Engineering Structures 31(6): 1298–1304. http://dx.doi.org/10.1016/j.engstruct.2009.01.004

Kalanta, S. 2007. Taikomosios optimizacijos pagrindai. Vilnius: Technika. 480 p. ISBN 9789955281603. http://dx.doi.org/10.3846/924-S

Kalanta, S. 1995. Element konechnogo ravnovesiia v vychislenii uprugikh konstrukcij, Stroitelstvo 1(1): 25–47.

Karkauskas, R. 2004. Optimization of Elastic-Plastic Geometrically Non-Linear Lightweight Structures under Stiffness and Stability Constraints, Journal of Civil Engineering and Management 10(2): 97–106. http://dx.doi.org/10.1080/13923730.2004.9636293

Maciulevicius, D. A. 1966. Algoritm vypuklogo programmirovaniia dlia sinteza uprugoj sharnirno-sterzhnevoj konstruktsii minimalnogo vesa v sluchae mnogikh zagruzhenij, in Stroitelnaia mekhanika i konstruktsii. Vilnius: Mintis, 79–85.

Maciulevicius, D. A. 1964. Algoritm lineinogo programmirovaniia dlia sinteza sterzhnevykh staticheski opredelimykh konstruktsij minimalnogo vesa, in Stroitelnaia mekhanika i konstruktsii. Vilnius: Mintis, 33–49.

Majid, K. I. 1974. Optimum of Design Structures. New York: Wiley. 264 p. ISBN 0470565330.

Manickarajah, D.; Xie, Y. M.; Steven, G. P. 2000. Optimum Design of Frames with Multiple Constraints Using an Evolutionary Method, Computers & Structures 74(6): 731–741. http://dx.doi.org/10.1016/S0045-7949(99)00083-8

Merkevičiūtė, D.; Atkočiūnas, J. 2006. Optimal Shakedown Design of Metal Structures under Stiffness and Stability Constrains, Journal of Constructional Steel Research 62(12): 1270–1275. http://dx.doi.org/10.1016/j.jcsr.2006.04.020

Rabinovich, I. M. 1933. K teorii staticheski neopredelimykh ferm. Moskva.

Rao, S. S. 2009. Engineering Optimization: Theory and Practice. 4th edition. New York: John Wiley & Sons. 840 p. ISBN 9780470183526

Yuge, K.; Iwai, N.; Kikuchi, N. 1999. Optimization of 2D Structures Subjected to Non-Linear Deformations Using the Homogenization Method, Structural Optimization 17(4): 286–299. http://dx.doi.org/10.1007/BF01894077

Zheng, Q. Z.; Querin, O. M.; Barton, D. C. 2006. Geometry and Sizing Optimisation of Discrete Structure Using the Genetic Programming Method, Structural and Multidisciplinary Optimization 31(6): 452–461. http://dx.doi.org/10.1007/s00158-005-0561-x

DOI: 10.3846/bjrbe.2012.16


  • There are currently no refbacks.

Copyright (c) 2012 Vilnius Gediminas Technical University (VGTU) Press Technika