Investigation on Application of Basalt Materials as Reinforcement for Flexural Elements of Concrete Bridges

Authors

  • Viktor Gribniak Research Laboratory of Innovative Building Structures, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania; Institute of Polymer Mechanics, University of Latvia, Aizkraukles str. 23, LV-1006 Riga, Latvia
  • Aleksandr K. Arnautov Institute of Polymer Mechanics, University of Latvia, Aizkraukles str. 23, LV-1006 Riga, Latvia
  • Gintaris Kaklauskas Dept of Bridges and Special Structures, VGTU, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
  • Vytautas Tamulenas Research Laboratory of Innovative Building Structures, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
  • Edgaras Timinskas Dept of Bridges and Special Structures, VGTU, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
  • Aleksandr Sokolov Research Laboratory of Innovative Building Structures, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania

DOI:

https://doi.org/10.3846/bjrbe.2015.25

Keywords:

reinforced concrete, basalt fibre reinforced polymer (BFRP), internal bars, external sheets, test data

Abstract

Basalt polymers are rather new materials for civil engineering; therefore, identification of peculiarities and limitations of application of such polymers in concrete structures (particularly bridges) is of vital importance. This paper experimentally investigates deformation behaviour and cracking of flexural elements, which are predominant parameters governing serviceability of the bridges. Unlike a common practice, the present study is not limited by the analysis of concrete beams reinforced with the polymer bars; it also considers effectiveness of basalt fibre reinforced polymer sheets for repairing the beams. The analysis has revealed that a combination of the high strength and elasticity polymer materials governs the effective repair of the beams by significantly increasing (up to 40%) the structural stiffness.

References

Cigna, R.; Andrade, C.; Nürnberger, U.; Polder, R.; Weydert, R.; Seitz, E. 2003. Corrosion of Steel in Reinforced Concrete Structures. Final Report COST 521. European Commission, Directorate-General for Research, Luxembourg, 238 p.

Gribniak, V.; Arnautov, A. K.; Kaklauskas, G.; Jakstaite, R.; Tamulenas, V.; Gudonis, E. 2014. Deformation Analysis of RC Ties Externally Strengthened with FRP Sheets, Mechanics of Composite Materials 50(5): 669–676. http://dx.doi.org/10.1007/s11029-014-9454-7

Gribniak, V.; Cervenka, V.; Kaklauskas, G. 2013a. Deflection Prediction of Reinforced Concrete Beams by Design Codes and Computer Simulation, Engineering Structures 56: 2175–2186. http://dx.doi.org/10.1016/j.engstruct.2013.08.045

Gribniak, V.; Kaklauskas, G.; Torres, L.; Daniunas, A.; Timinskas, E.; Gudonis, E. 2013b. Comparative Analysis of Deformations and Tension-Stiffening in Concrete Beams Reinforced with GFRP or Steel Bars and Fibers, Composites Part B: Engineering 50: 158– 170. http://dx.doi.org/10.1016/j.compositesb.2013.02.003

Gribniak, V.; Kaklauskas, G.; Bacinskas, D. 2008. Experimental Investigation of Shrinkage Influence on Tension Stiffening of RC Beams, in Proc. of the 8th International Conference: Creep, Shrinkage and Durability of Concrete and Concrete Structures (ConCreep 8). Ed. by Sato, R.; Maekawa, K.; Tanabe, T.; Saka- ta, K.; Nakamura, H.; Mihashi, H., 30 September – 2 October, 2008, Ise-Shima, Japan. Taylor & Francis, 571–577. http://dx.doi.org/10.1201/9780203882955

Gudonis, E.; Timinskas, E.; Gribniak, V.; Kaklauskas, G.; Arnautov, A. K.; Tamulenas, V. 2014. FRP Reinforcement for Concrete Structures: State-of-the-Art Review of Application and Design, Engineering Structures and Technologies 5(4): 147– 158. http://dx.doi.org/10.3846/2029882X.2014.889274

High, C. M. 2014. Use of Basalt Fibers for Reinforced Concrete Structures: Ms Thesis. North Carolina State University. 131 p.

Jakubovskis, R.; Kaklauskas, G.; Gribniak, V.; Weber, A.; Juknys, M. 2014. Serviceability Analysis of Concrete Beams with Different Arrangements of GFRP Bars in the Tensile Zone, Journal of Composites for Construction-ASCE 18(5): 04014005-1–04014005-10. http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000465

Kaklauskas, G.; Christiansen, M. B.; Bacinskas, D.; Gribniak, V. 2008. Deformation Model of Reinforced Concrete Members Taking into Consideration Shrinkage and Creep Effects at the Pre-Loading Stage. Final Report No. T-1025/08. Vilnius. 47 p.

Ke, W.; Li, Z. 2008. Survey of Corrosion Cost in China and Preventive Strategies, Corrosion Science and Technology 7(5): 259–264.

Miller, A. D. 2006. Repair of Impact-Damaged Prestressed Concrete Bridge Girders Using Carbon Fiber Reinforced Polymer (CFRP) Materials: Ms Thesis. North Carolina State University, 155 p.

Sim, J.; Park, C.; Moon, D. Y. 2005. Characteristics of Basalt Fiber as a Strengthening Material for Concrete Structures, Composites Part B: Engineering 36(6–7): 504–512. http://dx.doi.org/10.1016/j.compositesb.2005.02.002

Timinskas, E.; Jakštaitė, R.; Gribniak, V.; Tamulėnas, V.; Kaklauskas, G. 2013. Accuracy Analysis of Design Methods for Concrete Beams Reinforced with Fiber Reinforced Polymer Bars, Engineering Structures and Technologies 5(3): 123–133. http://dx.doi.org/10.3846/2029882X.2013.869415

Zhishena, W.; Xina, W.; Ganga, W. 2012. Advancement of Structural Safety and Sustainability with Basalt Fiber Reinforced Polymers, in Proc. of CICE 2012 6th International Conference on FRP Composites in Civil Engineering, International Institute for FRP in Construction (IIFC), June 13-15, 2012, Rome, Italy.

Downloads

Published

27.09.2015

How to Cite

Gribniak, V., Arnautov, A. K., Kaklauskas, G., Tamulenas, V., Timinskas, E., & Sokolov, A. (2015). Investigation on Application of Basalt Materials as Reinforcement for Flexural Elements of Concrete Bridges. The Baltic Journal of Road and Bridge Engineering, 10(3), 201-206. https://doi.org/10.3846/bjrbe.2015.25