An Analysis of Road Pavement Collapses and Traffic Safety Hazards Resulting From Leaky Sewers

Emilia Kuliczkowska


In this paper, road pavement collapses resulting from sewer leakage are divided into six categories: negligible, marginal, considerable, serious, very serious and catastrophic, with the categorization being based on two criteria, both related to traffic safety, i.e., the number of fatalities caused by sinkholes, and the extent of the road pavement damage. The causes of road pavement collapses are also discussed. The study involved analyzing the deterioration of sewer pipes with long service lives, focusing on the most common materials, i.e., concrete and vitrified clay. The results of the sewer inspections performed by the Kielce University of Technology suggest that the spot and linear defects detected in sewers of this type can be divided into three groups. The findings were used to formulate some recommendations on how to improve road traffic safety by preventing road pavement collapses.


damage; road pavement collapse; sewer pipelines; traffic safety.

Full Text:



Berger, C.; Falk, C. 2011. Zustand der Kanalisation in Deutschland [Sewer Condition in Germany], Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V., Hennef, 15 p.

Ekes, C.; Neducza, B.; Krause, R.; Lee, R. 2014. Applications of Pipe Penetrating Radar for Advanced Pipe Condition Assessments – Clark Regional Wastewater District (WA) Case Study, in Proc. of the 24th International Conference “No-Dig 2014”, 13–17 April 2014, Orlando, Florida, USA, Paper MM-T1-02, 1–8.

Gassman, S.; Schroeder, A.; Ray, R. 2005. Field Performance of High Density Polyethylene Culvert Pipe, Journal of Transportation Engineering 131(2): 160–167.

Ghorbani, A.; Hasanzadehshooiili, H.; Sapalas, A.; Lakirouhani, A. 2013. Buckling of the Steel Liners of Underground Road Structures: The Sensitivity Analysis of Geometrical Parameters, The Baltic Journal Road and Bridge Engineering 8(4): 250–254.

Hansen, Ch. 2014. Quantification on the Elimination of Infiltration from Pre – And Post – Rehabilitation, in Proc. of the 32th International Conference “No-Dig 2014”, 13–15 October 2014, Madrid, Spain, Paper 6A-2, 1–10.

Hao, T.; Rogers, C. D. F.; Metje, N.; Chapman, D. N.; Muggleton, J. M.; Foo, K. Y.; Wang, P.; Pennock, S. R.; Atkins, P. R.; Swingler, S. G.; Parker, J.; Costello, S. B.; Burrow, M. P. N.; Anspach, J. H.; Armitage, R. J.; Cohn, A. G.; Goddard, K.; Lewin, P. L.; Orlando, G.; Redfern, M. A.; Royal, A. C. D.; Saul, A. J. 2012. Condition Assessment of the Buried Utility Service Infrastructure, Tunneling and Underground Space Technology 28: 331–334.

Kalantari, Z.; Folkeson, L. 2013. Road drainage in Sweden: Current Practice and Suggestions for Adaptation to Climate Change, Journal of Infrastructure Systems 19(2): 147–156.

Kuliczkowska, E.; Gierczak, M. 2013. Buckling Failure Numerical Analysis of HDPE Pipes Used for the Trenchless Rehabilitation of a Reinforced Concrete Sewer, Engineering Failure Analysis 32: 106–112.

Kuliczkowska, E. 2008. Kryteria planowania bezwykopowej odnowy nieprzełazowych przewodów kanalizacyjnych [Planning Criteria for Trenchless Rehabilitation of Sewers]. Kielce: University of Technology. 223 p.

Kuliczkowski, A.; Kuliczkowska, E.; Parka, A. 2011. Field Measurements of Sewer Main Structural Integrity, in Proc. of the 21th International Conference “No Dig 2011”, 26–31 March 2011, Washington, DC, USA, Paper E-3-04, 1–9.

Kuliczkowski, A.; Kuliczkowska, E.; Kubicka, U. 2010. The Criteria of Urgency for Sewer Line Rehabilitation, in Proc. of the Chicago, Illinois, USA, Paper A-4-05, 1–9.

Madryas, C.; Przybyła, B.; Wysocki, L. 2010. Badania i ocena stanu technicznego przewodów kanalizacyjnych [Survey and Assessment of the Technical Condition of Sewers]. Dolnośląskie Wydawnictwo Edukacyjne, Wrocław. 297 p.

Madryas, C.; Wysocki, L.; Moczko, A. 2012. Modern Systems and Methodology for the Technical Examination of Concrete Underground Infrastructure, in Underground Infrastructure of Urban Areas 2 – Madryas, Nienartowicz & Szot (eds), Taylor & Francis Group, London, 149–163.

Masada, T.; Sargand, S. 2007. Peaking Deflection of Pipe during Initial Backfilling Process, Journal of Transportation Engineering 133(2): 105–111.

Scheidegger, A.; Hug, T.; Rieckermann, J.; Maurer, M. 2011. Network Condition Simulator for Benchmarking Sewer Deterioration Models, Water Research 45(16): 4983–4994.

Stein, D. 1999. Instandhaltung von Kanalisation [Maintenance of Sewers]. 3th edition, Ernst & Sohn, A Wiley Company, Berlin. 941 p.

Tran, D. H.; Ng, A. W. M.; Mcmanus, K. J.; Burn, S. 2008. Prediction Models for Serviceability Deterioration of Storm Water Pipes, Structure and Infrastructure Engineering 4(4): 287–295.

Younis, R.; Knight, M. A. 2010a. A Probability Model for Investigating the Trend of Structural Deterioration of Wastewater Pipelines, Tunneling and Underground Space Technology 25(6): 670–680.

Younis, R.; Knight, M. A. 2010b. Continuation Ratio Model for the Performance Behavior of Wastewater Collection Networks, Tunneling and Underground Space Technology 25(6): 660–669.

DOI: 10.3846/bjrbe.2016.29


1. The structural integrity of corroded concrete sewers
Emilia Kuliczkowska, Anna Parka
Engineering Failure Analysis  vol: 104  first page: 409  year: 2019  
doi: 10.1016/j.engfailanal.2019.06.012


  • There are currently no refbacks.

Copyright (c) 2016 Vilnius Gediminas Technical University (VGTU) Press Technika