Experimental Investigation of Cracking Behaviour of Concrete Beams Reinforced with Steel Fibres Produced in Lithuania
Abstract
Keywords: |
: bar reinforcement; cracking; reinforced concrete; residual strength; steel fibres; test data.
|
Full Text: |
References
Afroughsabet, V.; Biolzi, L.; Ozbakkaloglu, T. 2016. High-Performance Fiber-Reinforced Concrete: a Review, Journal of Materials Science 51(14): 6517–6551. https://doi.org/10.1007/s10853-016-9917-4
Blesak, L.; Goremikins, V.; Wald, F.; Sajdlova, T. 2016. Constitutive Model of Steel Fibre Reinforced Concrete Subjected to High Temperatures, Journal of Advanced Engineering 56(6): 417–424. https://doi.org/10.14311/ap.2016.56.0417
Deluce, J. R.; Lee, S. C.; Vecchio, F. J. 2014. Crack Model for Steel Fiber-Reinforced Concrete Members Containing Conventional Reinforcement, ACI Structural Journal 111(1): 93–102. http://dx.doi.org/10.14359.51686433
Gopalaratnam, V. S. 1995. On the Characterization of Flexural Toughness in Fiber Reinforced Concretes, Cement and Concrete Composites 17(3): 239–254. https://doi.org/10.1016/0958-9465(95)99506-O
Gribniak, V.; Arnautov, A. K.; Norkus, A.; Kliukas, R.; Tamulenas, V.; Gudonis, E.; Sokolov, A. 2016. Steel Fibres: Effective Way to Prevent Failure of the Concrete Bonded with FRP Sheets, Advances in Materials Science and Engineering 2016: 1–10. https://doi.org/10.1155/2016/4913536
Gribniak, V.; Kaklauskas, G.; Kwan, A. K. H.; Bacinskas, D.; Ulbinas, D. 2012. Deriving Stress-Strain Relationships for Steel Fibre Concrete in Tension from Tests of Beams with Ordinary Reinforcement, Engineering Structures 42: 387–395. https://doi.org/10.1016/j.engstruct.2012.04.032
Groli, G.; Caldentey, A. P. 2016. Improving Cracking Behaviour with Recycled Steel Fibres Targeting Specific Applications – Analysis According to Model Code 2010, Structural Concrete 18(1): 29–39. https://doi.org/10.1002/suco.201500170
Iqbal, S.; Ali, A.; Holschemacher, K.; Bier, T. A. 2015. Mechanical Properties of Steel Fiber Reinforced High Strength Lightweight Self-Compacting Concrete (SHLSCC), Construction and Building Materials 98: 325–333. https://doi.org/10.1016/j.conbuildmat.2015.08.112
Kaklauskas, G.; Gribniak, V.; Bačinskas, D.; Rimkus, A.; Juozapaitis, A.; Misiūnaitė, I.; Tamulėnas, V.; Gudonis, E.; Merkevičius, T.; Garškaitė, A. 2014. Sumaniųjų tiltų vystymo Lietuvoje galimybių studija, įvertinant išsivysčiusių šalių patirtį (Feasibility Study: Development of Smart Bridges in Lithuania Taking into Account the Experience of Developed Countries), VGTU, 283 p. in Lithuanian
Rafiei, M. H.; Khushefati, W. H.; Demirboga, R.; Adeli, H. 2016. Neural Network, Machine Learning, and Evolutionary Approaches for Concrete Material Characterization, ACI Materials Journal 113(6): 781–789. https://doi.org/10.14359/51689360
Sahoo, D. R.; Sharma, A. 2014. Effect of Steel Fiber Content on Behavior of Concrete Beams with and without Stirrups, ACI Structural Journal 111(5): 1157–1166. https://doi.org/10.14359/51686821
Sanchez-Aparicio, L. J.; Ramos, L. F.; Sena-Cruz, J.; Barros, J. O.; Riveiro, B. 2015. Experimental and Numerical Approaches for Structural Assessment in New Footbridge Designs (SFRSCC– GFPR Hybrid Structure), Composite Structures 134: 95–105. https://doi.org/10.1016/j.compstruct.2015.07.041
Vandewalle, L. 2000. Cracking Behaviour of Concrete Beams Reinforced with a Combination of Ordinary Reinforcement and Steel Fibers, Materials and Structures 33(3): 164–170. https://doi.org/10.1007/BF02479410
DOI: 10.3846/bjrbe.2017.10
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Vilnius Gediminas Technical University (VGTU) Press Technika