Methods and Criteria for Evaluation of Asphalt Mixture Resistance to Low Temperature Cracking

Judita Gražulytė, Audrius Vaitkus, Vitalijus Andrejevas, Gediminas Gribulis

Abstract


In cold regions and areas where there is a huge difference between high and low temperatures asphalt pavements are subject to low temperature cracking. The appeared cracks form pavement discontinuities, through which water penetrates into pavement structure. It reduces the bearing capacity of the whole pavement structure, weakens adhesion between bitumen and aggregate, affects bonding between layers and increases the development of frost heaves. A sealing of cracks deals with these issues. However, additional inspections after each winter have to be carried out to identify both cracks that have newly appeared and cracks that need to be resealed. These activities significantly increase road maintenance cost. Selection of the appropriate asphalt mixture by its performance at low temperatures reduces or even prevents low temperature cracking of asphalt pavements. A number of methods such as the Indirect Tensile Test, the Bending Beam Rheometer Test, the Thermal Stress Restrained Specimen Test, Asphalt Thermal Cracking Analyser, the Single-Edge-Notched Beam Test, the Disc-Shaped Compact Tension Test, the Semi-Circular Bend Test, the Fenix Test, Asphalt Concrete Cracking Device and Spectral Analysis of Acoustic Emission are developed to evaluate asphalt mixture resistance to low temperature cracking. This paper presents an analysis of these tests, emphasizes their advantages and disadvantages and gives limiting criteria to evaluate asphalt mixture resistance to low temperature cracking. The test advantages and disadvantages are deciding factors in a test selection. Some tests such as the Thermal Stress Restrained Specimen Test and Spectral Analysis of acoustic emission can directly reveal the lowest temperature at which asphalt mixture can withstand induced thermal stresses.

Keywords:

asphalt mixture; critical cracking temperature; fracture mechanics; low temperature cracking; spectral analysis of acoustic emission.

Full Text:

PDF

References


Apeagyei, A. K.; Buttlar, W. G.; Reis, H. 2009. Assessment of Low-Temperature Embrittlement of Asphalt Binders Using an Acoustic Emission Approach, Insight–Non-Destructive Testing and Condition Monitoring 51(3): 129–136. https://doi.org/10.1784/insi.2009.51.3.129

Baglieri, O.; Dalmazzo, D.; Barazia, M.; Tabatabaee, H. A.; Bahia, H. U. 2012. Influence of Physical Hardening on the Low- Temperature Properties of Bitumen and Asphalt Mixtures, Procedia – Social and Behavioral Sciences 53: 504–513. https://doi.org/10.1016/j.sbspro.2012.09.901

Bahia, H.; Tabatabaee, H.; Velasquez, R. 2012a. Asphalt Thermal Cracking Analyser (ATCA), in Proc. of the 7th RILEM International Conference on Cracking in Pavements. RILEM Book- series, Vol 4. Ed. by Scarpas A., Kringos N., Al-Qadi I., A. L., 20–22 June, 2012, Delft, Netherlands. Dordrecht: Springer, 147–156. https://doi.org/10.1007/978-94-007-4566-7_15

Bahia, H.; Tabatabaee, H.; Velasquez, R. 2012b. Importance of Bitumen Physical Hardening for Thermal Stress Buildup and Relaxation in Asphalt, in Proc. of the 5th Eurasphalt & Eurobitume Congress,13–15 June, 2012, Istanbul, Turkey, 1–10.

Behnia, B. 2013. An Acoustic Emission-based Test to Evaluate Low-Temperature Behavior of Asphalt Materials. PhD Thesis. Dept of Civil and Environmental Engineering University of Illinois at Urbana Champaign, Urbana, Illinois, USA. 196 p. Available from the Internet: https://www.ideals.illinois.edu/han- dle/2142/45584.

Behnia, B., Dave, E.; Ahmed, S.; Buttlar W.; Reis, H. 2011. Effects of Recycled Asphalt Pavement Amounts on Low-Temperature Cracking Performance of Asphalt Mixtures Using Acoustic Emissions, Transportation Research Record 2208: 64–71. https://doi.org/10.3141/2208-09

Bhurke, A.; Shin, E.; Drzal, L. 1997. Fracture Morphology and Fracture Toughness Measurement of Polymer-Modified Asphalt Concrete, Transportation Research Record 1590: 23–33. https://doi.org/10.3141/1590-04

Buttlar, W.; Roque, R. 1994. Development and Evaluation of the Strategic Highway Research Program Measurement and Analysis System for Indirect Tensile Testing at Low Temperatures, Transportation Research Record 1454: 163–171.

Buttlar, W. G.; Behnia, B.; Reis, H. 2011. An Acoustic Emission-Based Test to Determine Asphalt Binder and Mixture Embrittlement Temperature. Final Report for NCHRP-IDEA Project 144. Urbana-Champaign: University of Illinois. 47 p.

Chehab, G. R.; Kim, Y. R. 2005. Viscoelastoplastic Continuum Damage Model Application to Thermal Cracking of Asphalt Concrete, Journal of Materials in Civil Engineering 17(4): 384–392. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:4(384)

Chong, K.; Kuruppu, M. 1984. New Specimen for Fracture Toughness Determination for Rock and Other Materials, International Journal of Fracture 26: R59–R62. https://doi.org/10.1007/BF01157555

Christensen, D. W.; Bonaquist, R. F. 2004. Evaluation of Indirect Tensile Test (IDT) Procedures for Low-Temperature Performance of Hot Mix Asphalt. NCHRP Report No. 530, National Cooperative Highway Research Program. 52 p.

Dave, E. V.; Buttlar, W. G.; Leon, S. E.; Behnia, B.; Paulino, G. H. 2013. IlliTC – Low-Temperature Cracking Model for Asphalt Pavements, Road Materials and Pavement Design 14(suppl 2): 57–78. https://doi.org/10.1080/14680629.2013.812838

Deme, I. J.; Young, F. D. 1987. Saint Anne Test Road Revisited Twenty Years Later. Report SM/M/89/172. Toronto: Shell Canada Products Company.

Falchetto, A. C.; Marasteanu, M. O.; Balmurugan, S.; Negulescu, I. I. 2014. Investigation of Asphalt Mixture Strength at Low Temperatures with the Bending Beam Rheometer, Road Materials and Pavement Design 15(suppl 1): 28–44. https://doi.org/10.1080/14680629.2014.926618

Guo, Z. K.; Kobayashi A. S.; Hawkins, N. M. 1995. Dynamic Mixed Mode Fracture of Concrete, International Journal of Solids and Structures 32(17–18): 2591–2607. https://doi. org/10.1016/0020-7683(94)00284-4

Hallin, J. P. 2004. Development of the 2002 Guide for the Design of New and Rehabilitated Pavement Structures: Phase II. NCHRP 1-37A, Washington, DC, USA: National Cooperative High- way Research Program.

Ho, C.; Romero, P. 2011. Using Asphalt Mixture Beams in the Bending Beam Rheometer, Road Materials and Pavement Design 12(2): 293–314. https://doi.org/10.1080/14680629.2011.9695247

Hofman, R.; Oosterban, E.; Erkens, S. M.; van der Kooij, J. 2003. Semi-Circular Bending Test to Assess the Resistance Against Crack Growth, in Proc. of the 6th R1LEM Symposium on Performance Testing and Evaluation of Bituminous Materials, 14–16 April, 2003, Zurich, Switzerland, 257–263.

Isacsson, U.; Zeng, H. 1998a. Cracking of Asphalt at Low Temperature as Related to Bitumen Rheology, Journal of Materials Science 33(8): 2165–2170. https://doi.org/10.1023/A:1004383506240

Isacsson, U.; Zeng, H. 1998b. Low-Temperature Cracking of Polymer-Modified Asphalt, Materials and Structures 31(1): 58–63. https://doi.org/10.1007/BF02486415

Jayatilaka, A. de S. 1979. Fracture of Engineering Brittle Materials. Applied Science Publishers. p.?

John, R; Shah, S. P. 1990. Mixed-Mode Fracture of Concrete Subjected to Impact Loading, Journal of Structural Engineering 116(3): 585–602. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:3(585)

Jones, Z.; Romero, P.; VanFrank, K. 2014. Development of Low- temperature Performance Specifications for Asphalt Mixtures using the Bending Beam Rheometer, Road Materials and Pavement Design 15(3): 574–587. https://doi.org/10.1080/14680629.2014.908135

Jung, D.; Vinson, T. S. 1993. Low-Temperature Cracking Resistance of Asphalt Concrete Mixtures, Journal of the Association of Asphalt Paving Technologists 62: 54–92.

Jung, D. H.; Vinson, T. S. 1994. Low-Temperature Cracking: Test Selection. SHRP-A-400, Washington, DC, USA: Strategic Highway Research Program. National Research Council.

Kim, K. W.; El Hussein, M. 1997. Variation of Fracture Toughness of Asphalt Concrete under Low Temperatures, Construction and Building Materials 11(7–8): 403–411. https://doi.org/10.1016/S0950-0618(97)00030-5

Kim, S. S.; Wargo, A.; Powers, D. 2009. A Simple Test Procedure for Evaluating Low Temperature Cracking Resistance of Asphalt Concrete. Final Report FHWA/OH-2009/5, Ohio Dept of Transportation.

Kim, S. S.; Wargo, A.; Powers, D. 2010. Asphalt Concrete Cracking Device to Evaluate Low Temperature Performance of HMA, Journal of the Association of Asphalt Paving Technologists 79: 157–188.

Li, X., Braham A. F.; Marasteanu, M. O.; Buttlar, W. G.; Williams, R. C. 2008. Effect of Factors Affecting Fracture Energy of Asphalt Concrete at Low Temperature, Road Materials and Pavement Design 9(suppl 1): 397–416. https://doi.org/10.1080/14680629.2008.9690176

Li, X.; Marasteanu, M.; Iverson, N.; Labuz, J. 2006. Observation of Crack Propagation in Asphalt Mixtures with Acoustic Emission, Transportation Research Record 1970: 171–177. https://doi.org/10.3141/1970-20

Li, X.; Marasteanu, M. 2004. Evaluation of the Low Temperature Fracture Resistance of Asphalt Mixtures Using the Semi-Circular Bend Test, Journal of the Association of Asphalt Paving Technologists 73: 401–426.

Li, X.; Marasteanu, M. O. 2006. Investigation of Low Temperature Cracking in Asphalt Mixtures by Acoustic Emission, Road Materials and Pavement Design 7(4): 491–512. https://doi.org/10.1080/14680629.2006.9690048

Lytton, R. L.; Uzan, J.; Fernando, E. G. 1993. Development and Validation of Performance Prediction Models and Specifications for Asphalt Binders and Paving Mixes. Report SHRP- A-357, Washington, DC.

Lu, X.; Isacsson, U. 2001. Effect of Binder Rheology on the Low-Temperature Cracking of Asphalt Mixtures, Road Materials and Pavement Design 2(1): 29–47. https://doi.org/10.1080/14680629.2001.9689893

Mandal, T.; Hanz, A. J.; Bahia, H. U. 2017. Challenges in Using Disc Compact Tension Test to Investigate Effect of Asphalt Mix Design Variables at Low Temperatures, in Proc. of the Transportation Research Board 96th Annual Meeting, 8–12 January, 2017, Washington, D.C.

Marasteanu, M., Dai, S.; Labuz, J.; Li, X. 2002. Determining the Low-Temperature Fracture Toughness of Asphalt Mixtures. Transportation Research Record 1789: 191–199. https://doi.org/10.3141/1789-21

Marasteanu, M.; Zofka, A.; Turos, M.; Li, X.; Velasquez, R.; Li, X.; Buttlar, W. 2012. Investigation of Low Temperature Cracking in Asphalt Pavements. National Pooled Fund Study -Phase II. Report No. MN/RC 2012-23. Minnesota Dept of Transportation. 323 p.

Marasteanu, M. Zofka, A.; Turos, M.; Li, X.; Velasquez, R.; Li, X.; Buttlar, W.; Paulino, G.; Braham, A.; Dave, E.; Ojo, J.; Bahia, H.; Williams, Ch.; Bausano, J.; Gallistel, A.; McGraw, J. 2007. Investigation of Low Temperature Cracking in Asphalt Pavements. National Pooled Fund Study 776. Report No. MN/RC 2007-43. Minnesota Dept of Transportation. 262 p.

Marasteanu, M.; Falchetto, A. C.; Velasquez, R.; Le, J. L. 2016. On the Representative Volume Element of Asphalt Concrete at Low Temperature, Mechanics of Time-Dependent Materials 20(3): 343–366. https://doi.org/10.1007/s11043-016-9302-3

Marasteanu, M.; Labuz, J.; Li, X. 2008. Acoustic Emission in Asphalt Mixture IDT Creep and Strength Tests, in Pavement Cracking. CRC Press. https://doi.org/10.1201/9780203882191.ch49

Moavenzadeh, F. 1967. Asphalt Fracture, Journal of the Association of Asphalt Paving Technologist 36: 51–72.

Mobasher, B.; Mamlouk, M. S.; Lin, H. M. 1997. Evaluation of Crack Propagation Properties of Asphalt Mixtures, Journal of Transportation Engineering 123(5): 405–413. https://doi.org/10.1061/(ASCE)0733-947X(1997)123:5(405)

Molenaar, J. M. M.; Molenaar, A. A. A. 2000. Fracture Toughness of Asphalt in the Semi-Circular Bend Test, in Proc. of the 2nd Euroasphalt and Eurobitume Congress, 20–22 September, 2000, Barcelona, Spain. 509–517.

Monismith, C. L.; Secor, G. A.; Secor, K. E. 1965. Temperature Induced Stresses and Deformations in Asphalt Concrete, in Proc. of Association of Asphalt Paving Technologists 248–285.

Nesvijski, E.; Marasteanu, M. 2006. Spectral Analysis of Acoustic Emission of Cold Cracking Asphalt, NDT.net 11(10): 1–18.

Pérez-Jiménez, F.; Gonzalo, V.; Rodrigo, M.; Adriana, M.; Ramon, B. 2010. Fénix Test: Development of a New Test Procedure for Evaluating Cracking Resistance in Bituminous Mixtures, Transportation Research Record 2181: 36–43. https://doi.org/10.3141/2181-05

Pérez-Jiménez, F. E.; Botella, R.; Moon, K. H.; Marasteanu, M. 2013. Application of Semicircular Bend and Fénix Tests for Assessing Effect of Load Application Time and Temperature on Fracture Energy of Asphalt Mixtures, in Proc of the Transportation Research Board 92nd Annual Meeting, 13−17 January, 2013, Washington, D.C. 1–12.

Romero, P.; Youtcheff, J.; Stuart, K. 1999. Low-Temperature Physical Hardening of Hot-Mix Asphalt, Transportation Research Record 1661: 22–26. https://doi.org/10.3141/1661-04

Romero, P.; Masad, E. 2001. Relationship between the Representative Volume Element and Mechanical Properties of Asphalt Concrete, Journal of Materials in Civil Engineering 13(1): 77–84. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:1(77)

Roque, R.; Buttlar, W. G. 1992. The Development of a Measurement and Analysis System to Accurately Determine Asphalt Concrete Properties Using the Indirect Tensile Mode, Journal of the Association of Asphalt Paving Technologists 61: 304–328.

Sebaaly, P. E.; Lake, A.; Epps, J., 2002. Evaluation of Low-Temperature Properties of HMA Mixtures, Journal of Transportation Engineering 128(6): 578–586. https://doi.org/10.1061/(ASCE)0733-947X(2002)128:6(578)

Shahin, M. Y.; McCullough, B. F. 1972. Prediction of Low-temperature and Thermal Fatigue Cracking in Flexible Pavements. Research Report No. 123–14, 225 p.

Tabatabaee, H.; Velasquez, R.; Bahia, H. 2012. Modeling Thermal Stress in Asphalt Mixtures Undergoing Glass Transition and Physical Hardening, Transportation Research Record 2296: 106–114. https://doi.org/10.3141/2296-11

Velasquez, R.; Zofka, A. M.; Turos, M.; Marasteanu, M. 2011. Bending Beam Rheometer Testing of Asphalt Mixtures, International Journal of Pavement Engineering 12(5): 461–474. https://doi.org/10.1080/10298430903289956

Velásquez, R.; Labuz, J. F.; Marasteanu, M.; Zofka, A. M. 2009. Revising Thermal Stresses in the TSRST for Low-Temperature Cracking Prediction, Journal of Materials in Civil Engineering 21(11): 680–687. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:11(680)

Vinson, T. S.; Janoo, V. C.; Haas, C. G. 1989. Low Temperature and Thermal Fatigue Cracking, SHRP Summary Report No. A-003A, Washington, DC, USA.

Wagoner, M. P.; Buttlar, W. G. 2007. Influence of Specimen Size in Fracture Energy of Asphalt Concrete, Journal of the Association of Asphalt Paving Technologists 76: 391–426.

Wagoner, M. P.; Buttlar, W. G.; Paulino, G. H. 2005a. Development of a Single-Edge Notched Beam Test for Asphalt Concrete Mixtures, Journal of Testing and Evaluation 33(6): 1−9. https://doi.org/10.1520/JTE12579

Wagoner, M. P.; Buttlar, W. G.; Paulino, G. H. 2005b. Disk-Shaped Compact Tension Test for Asphalt Concrete Fracture, Experimental Mechanics 45(3): 270–277. https://doi.org/10.1177/0014485105053205

Weissman, S.; Harvey, J.; Sackman, J.; Long, F. 1999. Selection of Laboratory Test Specimen Dimension for Permanent Deformation of Asphalt Concrete Pavements, Transportation Research Record 1681: 113–120. https://doi.org/10.3141/1681-14

Zofka, A.; Braham, A. 2009. Comparison of Low-Temperature Field Performance and Laboratory Testing of 10 Test Sections in the Midwestern United States, Transportation Research Record 2127: 107–114. https://doi.org/10.3141/2127-13

Zofka, A.; Marasteanu, M.; Li, X.; Clyne, T.; McGraw, J. 2005. Simple Method to Obtain Asphalt Binders Low Temperature Properties from Asphalt Mixtures Properties, Journal of the Association of Asphalt Paving Technologists 74: 255–282.

Zofka, A.; Marasteanu, M.; Turos, M. 2008a. Determination of Asphalt Mixture Creep Compliance at Low Temperatures by Using Thin Beam Specimens, Transportation Research Record 2057: 134–139. https://doi.org/10.3141/2057-16

Zofka, A.; Marasteanu, M.; Turos, M. 2008b. Investigation of Asphalt Mixture Creep Compliance at Low Temperatures, Road Materials and Pavement Design 9(suppl 1): 269–285. https://doi.org/10.1080/14680629.2008.9690169




DOI: 10.3846/bjrbe.2017.16

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Vilnius Gediminas Technical University (VGTU) Press Technika