The Impact of Long-Time Chemical Bonds in Mineral-Cement-Emulsion Mixtures on Stiffness Modulus

Authors

  • Bohdan Dołżycki Dept of Highway and Transportation Engineering, Gdańsk University of Technology, Gdańsk, Poland
  • Mariusz Jaczewski Dept of Highway and Transportation Engineering, Gdańsk University of Technology, Gdańsk, Poland
  • Cezary Szydłowski Dept of Highway and Transportation Engineering, Gdańsk University of Technology, Gdańsk, Poland

DOI:

https://doi.org/10.7250/bjrbe.2018-13.406

Keywords:

cement bonding, cold in-place recycling, Mineral-Cement-Emulsion mixtures, phase angle, stiffness

Abstract

Deep cold in-place recycling is the most popular method of reuse of existing old and deteriorated asphalt layers of road pavements. In Poland, in most cases, the Mineral-Cement-Emulsion mixture technology is used, but there are also applications combining foamed bitumen and cement. Mineral-Cement-Emulsion mixtures contain two different binding agents – cement as well as asphalt from the asphalt emulsion. Asphalt creates asphalt bonding (responsible for flexible behaviour), whereas cement generates hydraulic bonds (responsible for stiffness of the layer). Final properties of Mineral- Cement-Emulsion mixtures are a result of a combination of both binding agents. While the stiffness of the material is unaffected by asphalt bonding, an increase in stiffness with time is visible for materials treated with hydraulic binders. This publication presents the change in stiffness modulus of Mineral-Cement-Emulsion mixtures by Simple Performance Test. For the analysis, two batches of specimens were used: the first was tested 28 days after compaction (period stated in Polish recommendations) and the second was tested 1.5 years after compaction. Analysis showed that after 1.5 years the stiffness modulus increased by about 10% in comparison to the 28 days after compaction. The change is minor but still significant. Unexpectedly, the level of the increase was unaffected by the combination of the binding agents (asphalt emulsion, cement).

References

AASHTO TP79. (2013). Standard Method of Test for Determining the Dynamic Modulus and Flow Number for Asphalt Mixtures Using the Asphalt Mixture Performance Tester (AMPT).

Bocci, M., Grilli, A., Cardone, F., & Graziani, A. (2011). A study on the mechanical behaviour of cement–bitumen treated materials. Construction and building materials, 25(2), 773–778. https://doi.org/10.1016/j.conbuildmat.2010.07.007

Chomicz-Kowalska, A., & Maciejewski, K. (2015). Multivariate optimization of recycled road base cold mixtures with foamed bitumen. Procedia Engineering, 108, 436–444. https://doi.org/10.1016/j.proeng.2015.06.168

Dołżycki, B. (2015). Badania mieszanek mineralno-cementowo- emulsyjnych (MCE). Budownictwo i Architektura, 14(4), 189–196 (in Polish).

Dołżycki, B., Jaczewski, M., & Szydłowski, C. (2017a). The influence of binding agents on stiffness of mineral-cement-emulsion mixtures. Procedia Engineering, 172, 239–246. https://doi.org/10.1016/j.proeng.2017.02.103

Dolzycki, B., Jaczewski, M., & Szydlowski, C. (2017b). The longterm properties of mineral-cement-emulsion mixtures. Construction and Building Materials, 156, 799–808. https://doi.org/10.1016/j.conbuildmat.2017.09.032

FGSV. (2005). Merkblatt für Kaltrecycling in situ im Straßenoberbau. Vol 636. FGSV. Forschungsgesellschaft für Straßen- und Verkehrswesen Arbeitgruppe Minneralstoffe im Straßen. Koln 2005.

GDDKiA. (2013). Instrukcja projektowania i wbudowywania mieszanek mineralno-cementowo-emulsyjnych (MCE). Politechnika Gdańska. Retrieved from www.gddkia.gov.pl/ userfiles/articles/p/prace-naukowo-badawcze-w-trakcie_3434/ instrukcja%20projektowania%20i%20wbudowywania%20 mieszanek%20mineralno-cementowo-emulsyjnychwersja- 12-12-2013.pdf

Iwański, M., & Chomicz-Kowalska, A. (2011, May). The effects of using foamed bitumen and bitumen emulsion in the cold recycling technology. 8th International Conference on Environmental Engineering, Vilnius, Lithuania (pp. 1089–1096).

Iwański, M., & Chomicz-Kowalska, A. (2016). Application of the foamed bitumen and bitumen emulsion to the road base mixes in the deep cold recycling technology. Baltic Journal of Road & Bridge Engineering, 11(4), 291–301. https://doi.org/10.3846/bjrbe.2016.34

Kleizienė, R., Vaitkus, A., & Čygas, D. (2016). Influence of asphalt visco elastic properties on flexible pavement performance. Baltic Journal of Road & Bridge Engineering, 11(4), 313–323. https://doi.org/10.3846/bjrbe.2016.36

Kukiełka, J. (2007). Trwałość podbudów z mieszanek mineralno-cementowo- emulsyjnych (MMCE). Budownictwo i Architektura, 1, 45–56 (in Polish).

Li, J., Zofka, A., & Yut, I. (2012). Evaluation of dynamic modulus of typical asphalt mixtures in Northeast US region. Road materials and pavement design, 13(2), 249–265. https://doi.org/10.1080/14680629.2012.666641

NCHRP 614. (2008). National Cooperative Highway Research Program. NCHRP Report 614. Refining the Simple Performance Tester for Use in Routine Practice. Transportation Research Board. Washington D.C.

Neville, A. M., Ajdukiewicz, A., Degler, A., & Kasperkiewicz, J. (2012). Właściwości betonu. Stowarzyszenie Producentów Cementu (in Polish).

Pellinen, T. K., Witczak, M. W., Marasteanu, M., Chehab, G., Alavi, S., & Dongré, R. (2002, December). Stress dependent master curve construction for dynamic (complex) modulus. Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, 71, 281– 309. Association of Asphalt Paving Technologist.

PN-EN 12697-35. (2016). Bituminous mixtures. Test methods. Laboratory mixing.

PN-EN 12697-31. (2007). Bituminous mixtures. Test methods for hot mix asphalt. Specimen preparation by gyratory compactor.

Rowe, G. M., & Sharrock, M. J. (2011). Alternate shift factor relationship for describing the temperature dependency of the visco-elastic behaviour of asphalt materials, Transportation Research Record, 2207, 125–135. https://doi.org/10.3141/2207-16

Theyse, H., Long, F., Harvey, J. T., & Monismith, C. L. (2004). Discussion of Deep In-Situ Recycling (DISR). Technical Memorandum prepared for the California Department of Transportation. Pavement Research Center, Institute of Transportation Studies, University of California Berkeley, University of California Davis. UCPRC-TM-2004-6.

Uzarowski, L., Maher, M., & Tighe, S. (2015). Green pavement technologies are sustainable only if they deliver acceptable performance. Proceedings of the Sixtieth Annual Conference of the Canadian Technical Asphalt Association (CTAA): Winnipeg, Manitoba, Canada.

Valentin, J., Čížková, Z., Suda, J., Batista, F., Mollenhauer, K., & Simnofske, D. (2016). Stiffness characterization of cold recycled mixtures. Transportation Research Procedia, 14, 758–767. https://doi.org/10.1016/j.trpro.2016.05.065

Zofka, A., & Yut, I. (2011). Alternative procedure for determination of hot mix asphalt creep compliance. Journal of Testing and Evaluation, 39(1), 39–49. https://doi.org/10.1520/JTE102760

Downloads

Published

25.06.2018

How to Cite

Dołżycki, B., Jaczewski, M., & Szydłowski, C. (2018). The Impact of Long-Time Chemical Bonds in Mineral-Cement-Emulsion Mixtures on Stiffness Modulus. The Baltic Journal of Road and Bridge Engineering, 13(2), 121-126. https://doi.org/10.7250/bjrbe.2018-13.406