New Hungarian Mechanistic-Empirical Design Procedure for Asphalt Pavements

Authors

DOI:

https://doi.org/10.7250/bjrbe.2020-15.466

Keywords:

asphalt, design, layer modulus, pavement, soil improvement, structure

Abstract

Certain elements of the currently used Hungarian pavement design method are based on the mechanistic-empirical pavement design principles, although they are not always readily implemented in practice. When designing a new pavement structure, it is only possible to select predetermined composition from a catalogue. The use of the Hungarian design catalogue is unquestionably comfortable, but nowadays special requirements (e.g. economy, sustainability) have been formulated as well. Those requirements increasingly call for the development of a method that can be used under Hungarian conditions, which can provide for the employment of various material properties. Instead of offering a predefined solution it needs to provide a useful tool for designers to enable realistic comparisons of engineering alternatives. This paper introduces the results of an ongoing research that aims to provide an alternative procedure for the design of newly constructed asphalt pavements. It establishes the framework for better characterization of the material properties of the natural subgrade and bound pavement layers compared to the utilization of predetermined designs. It also provides opportunity to consider local, environmental, geographical and other conditions and innovative building and technology capabilities.

References

Adorjányi, K. (2011). Effect of Capping Layers on the Improvement of Subgrade Bearing Capacity. In Proceedings of 11th International Scientific Conference (MOBILITA ´11). Bratislava, 26–27 May 2011.

AMADEUS. (2000). AMADEUS: Advanced Models for Analytical Design of European Pavement Structure. RO-97-SC.2137. The European Commission under the Transport RTD Programme of the 4th Framework Programme. https://trimis.ec.europa.eu/project/advanced-models-analytical-design-europeanpavement-structures

Balay, J. M, Brosseaud, Y., Bara, B., & Castaneda, E. (2012). Adaptation of the French Pavement Design to Countries in South America. Congrès 8eme Jornadas International Des Asfalto.

Barker, W. R., Brabston, W. N., & Chou, Y. T. (1977). General System for the Structural Design of Flexible Pavements. In Proceedings of 4th International Conference on Structural Design of Asphalt Pavements (vol. 1, pp. 209–248). Ann Arbor, Michigan, 22–26 August 1977.

Burmister, D. M. (1945). The General Theory of Stresses and Displacements in Layered Systems. I. Journal of Applied Physics, 16(2), 89–94. https://doi.org/10.1063/1.1707558

COST. (1999). COST 333: Development of New Bituminous Pavement Design Method; Final Report of the Action. EUR 18906. Luxembourg: Office for Official Publ. of the Europ. Communities.

Eberhardsteiner, L., & Blab, R. (2017). Design of Bituminous Pavements – a Performance-Related Approach. Road Materials and Pavement Design, 20(2), 244–258. https://doi.org/10.1080/14680629.2017.1380689

Fannin, J. (2008). Karl Terzaghi: From Theory to Practice in Geotechnical Filter Design. Journal of Geotechnical and Geoenvironmental Engineering, 134(3), 267–76. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:3(267)

Fi, I., & Pethő, L. (2008). Calculation of the Equivalent Temperature of Pavement Structures. Periodica Polytechnica Civil Engineering, 52(2), 91. https://doi.org/10.3311/pp.ci.2008-2.05

Harrison, C., & Jameson, G. (2012). Guide to Pavement Technology: Part 2: Pavement Structural Design. 3rd ed. Sydney, NSW 2000 Australia: Austroads Ltd.

Judycki, J., Piotr, J., Marek, P., Ryś, D., Jaczewski, M., Alenowicz, J., Dołżycki, B & Stienss, M. (2017). New Polish Catalogue of Typical Flexible and Semi-Rigid Pavements. In MATEC Web of Conferences, 122, 04002. https://doi.org/10.1051/matecconf/201712204002

Karoliny, M., & Gáspár, L. (2015). Investigation and Design of Durable Pavement Structure Rehabililation. International Journal on Pavement Engineering & Asphalt Technology, 16(1), 30–54. https://doi.org/10.1515/ijpeat-2015-0002

Li, Q., Xiao, D. X., Wang, K. C. P., Hall, K. D., & Qiu, Y. (2011). Mechanistic-Empirical Pavement Design Guide (MEPDG): A Bird’s-Eye View. Journal of Modern Transportation, 19(2), 114–33. https://doi.org/10.1007/bf03325749

MSZ EN 13286-7:2004. (2004). Unbound and hydraulically bound mixtures. Part 7: Cyclic load triaxial test for unbound mixtures.

MSZ EN 13286-47:2012. (2012). Unbound and hydraulically bound mixtures. Part 47: Test method for the determination of California bearing ratio, immediate bearing index and linear swelling.

MSZ EN 13249:2014+A1:2015. (2015). Geotextiles and geotextile-related products. Characteristics required for use in the construction of roads and other trafficked areas (excluding railways and asphalt inclusion)

Pereira, P., & Pais, J. (2017). Main Flexible Pavement and Mix Design Methods in Europe and Challenges for the Development of an European Method. Journal of Traffic and Transportation Engineering (English Edition), 4(4), 316–346. https://doi.org/10.1016/j.jtte.2017.06.001

Pethő, L. (2008). Influence of Temperature Distribution on the Design of Pavement Structures. Periodica Polytechnica Civil Engineering, 52(1), 45–53. https://doi.org/10.3311/pp.ci.2008-1.07

Pethő, L., & Tóth, Cs. (2014). The Development of Pavement Rehabilitation Design Guidelines for Increasing the Allowable Axle Load from 100 kN to 115 kN. In Y. Kim (Ed.), Asphalt Pavements (pp. 1577–1586). CRC Press. https://doi.org/10.1201/b17219-191

Pronk, A. C. (1994). Equivalent Layer Theories: State of the Art Report. W-DWW-94-904. DWW Werkdocument. Delft, Netherlands 2628 CS: Dienst Wegen Waterbouwkunde (DWW).

RDO Asphalt 09. (2009). Richtlinien für die rechnerische Dimensionierung des Oberbaus von Verkehrsflächen mit Asphaltdeckschicht: RDO Asphalt 09.

Report FGSV-498. FGSV. Köln: Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV).

Terzaghi, K., & Peck, R. P. (1961). Die Bodenmechanik in der Baupraxis [Soil Mechanics in Building Construction]. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-92829-1

ÚT 2-1.202:2005. (2005). Aszfaltburkolatú útpályaszerkezetek méretezése és megerősítése [Designing and strengthening of asphalt pavements]. Útügyi Műszaki Előírás. (in Hungarian).

Verstraeten, J., Veverka, V., & Francken, L. (1982). Rational and Practical Designs of Asphalt Pavements to Avoid Cracking and Rutting. In Proceedings Fifth International Conference on Structural Design of Asphalt Pavements, (vol. 1, pp. 45–58). Delft University of Technology.

Vukobratović, N., Barišić, I., & Sanja, D. (2017). Analyses of the Influence of Material Characteristics on Pavement Design. Elektronički Časopis Građevinskog Fakulteta Osijek, 8–19. https://doi.org/10/gfj4g9

Downloads

Published

17.03.2020

How to Cite

Tóth, C., & Primusz, P. (2020). New Hungarian Mechanistic-Empirical Design Procedure for Asphalt Pavements. The Baltic Journal of Road and Bridge Engineering, 15(1), 161-186. https://doi.org/10.7250/bjrbe.2020-15.466