Estimating Parameters for Traffic Flow Using Navigation Data on Vehicles
Abstract
The article describes the method for estimating transport flow parameters using the two-fluid Herman-Prigogine mathematical model developed considering the proposed method of estimating parameters for the system based on the passive processing of navigation data on the movement of vehicles. The efficiency of the suggested algorithms and mathematical models for estimating road traffic flow parameters and the system as a whole was confirmed performing tests using a set of tracks on the main highways of Belarus.
Keywords: |
mathematical model; navigation system; parameter; traffic flow; vehicle
|
Full Text: |
References
Blinkin, M. Ya., & Tkachenko, B. A. (2009). Sistemnaya otsenka usloviy dvizheniya na baze modeli Khermana-Prigozhina. Sotsial'no-ekonomicheskie problemy razvitiya transportnykh sistem gorodov i zon ikh vliyaniya. In Materialy XV Mezhdunarodnoy nauch.-prakt. konf. ( pp. 1 35–143). Yekaterinburg, 16–17 Jun. 2009. Yekaterinburg: Izd-vo ABM. (in Russian).
Daganzo, C. F. (1997). Fundamentals of transportation and traffic operations (Vol. 30). Oxford: Pergamon.
Dryu, D. (1972). Teoriya transportnykh potokov i upravlenie imi. Moscow: Transport. 424 p. (in Russian).
Gartner, N. H., Messer, C. J., & Rathi, A. (2002). Traffic flow theory – a state-of-the-art report: revised monograph on traffic flow theory.
Herman, R., & Prigogine, I. (1979). A two-fluid approach to town traffic. Science, 204(4389), 148–151. https://doi.org/10.1126/science.204.4389.148
Inose, Kh., & Khamada, T. (1983). Upravlenie dorozhnym dvizheniem. Moscow: Transport. 248 p. (in Russian).
Lighthill, M. J., & Whitham, G. B. (1955). On kinematic waves II. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 229(1178), 317–345. https://doi.org/10.1098/rspa.1955.0089
Lutts, M. (2010). Izuchaem Python [Studying Python]. Moscow: Simvol-Plius Publ. (in Russian).
Mikhaylov, A. Yu., & Golovnykh, I. M. (2004). Covremennye tendentsii proektirovaniya i rekonstruktsii ulichno-dorozhnykh setey gorodov. (in Russian).
Nelson, P., & Sopasakis, A. (1998). The Prigogine-Herman kinetic model predicts widely scattered traffic flow data at high concentrations. Transportation Research Part B: Methodological, 32(8), 589–604. https://doi.org/10.1016/S0191-2615(98)00020-4
Payne, H. J. (1971). Model of freeway traffic and control. Mathematical Model of Public System, 51–61.
Richards, P. I. (1956). Shock waves on the highway. Operations Research, 4(1), 42–51. https://doi.org/10.1287/opre.4.1.42
Shvetsov, V. I. (2003). Matematicheskoe modelirovanie transportnykh potokov. Avtomatika i Telemekhanika, (11), 3–46. (in Russian).
Vrubel', Yu. A. (2003). Poteri v dorozhnom dvizhenii. Minsk: BNTU. 380 p. (in Russian).
Vrubel', Yu. A., Kapskiy, D. V., Rozhanskiy, D. V., Navoy, D. V., & Kot, E. N. (2011). Koordinirovannoe upravlenie dorozhnym dvizheniem. (in Russian).
DOI: 10.7250/bjrbe.2020-15.492
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Marija Burinskienė, Denis Kapski, Valery Kasyanik, Anton Pashkevich, Aleksandra Volynets, Oleg Kaptsevich

This work is licensed under a Creative Commons Attribution 4.0 International License.