Estimating Parameters for Traffic Flow Using Navigation Data on Vehicles

Authors

DOI:

https://doi.org/10.7250/bjrbe.2020-15.492

Keywords:

mathematical model, navigation system, parameter, traffic flow, vehicle

Abstract

The article describes the method for estimating transport flow parameters using the two-fluid Herman-Prigogine mathematical model developed considering the proposed method of estimating parameters for the system based on the passive processing of navigation data on the movement of vehicles. The efficiency of the suggested algorithms and mathematical models for estimating road traffic flow parameters and the system as a whole was confirmed performing tests using a set of tracks on the main highways of Belarus.

References

Blinkin, M. Ya., & Tkachenko, B. A. (2009). Sistemnaya otsenka usloviy dvizheniya na baze modeli Khermana-Prigozhina. Sotsial'no-ekonomicheskie problemy razvitiya transportnykh sistem gorodov i zon ikh vliyaniya. In Materialy XV Mezhdunarodnoy nauch.-prakt. konf. ( pp. 1 35–143). Yekaterinburg, 16–17 Jun. 2009. Yekaterinburg: Izd-vo ABM. (in Russian).

Daganzo, C. F. (1997). Fundamentals of transportation and traffic operations (Vol. 30). Oxford: Pergamon.

Dryu, D. (1972). Teoriya transportnykh potokov i upravlenie imi. Moscow: Transport. 424 p. (in Russian).

Gartner, N. H., Messer, C. J., & Rathi, A. (2002). Traffic flow theory – a state-of-the-art report: revised monograph on traffic flow theory.

Herman, R., & Prigogine, I. (1979). A two-fluid approach to town traffic. Science, 204(4389), 148–151. https://doi.org/10.1126/science.204.4389.148

Inose, Kh., & Khamada, T. (1983). Upravlenie dorozhnym dvizheniem. Moscow: Transport. 248 p. (in Russian).

Lighthill, M. J., & Whitham, G. B. (1955). On kinematic waves II. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 229(1178), 317–345. https://doi.org/10.1098/rspa.1955.0089

Lutts, M. (2010). Izuchaem Python [Studying Python]. Moscow: Simvol-Plius Publ. (in Russian).

Mikhaylov, A. Yu., & Golovnykh, I. M. (2004). Covremennye tendentsii proektirovaniya i rekonstruktsii ulichno-dorozhnykh setey gorodov. (in Russian).

Nelson, P., & Sopasakis, A. (1998). The Prigogine-Herman kinetic model predicts widely scattered traffic flow data at high concentrations. Transportation Research Part B: Methodological, 32(8), 589–604. https://doi.org/10.1016/S0191-2615(98)00020-4

Payne, H. J. (1971). Model of freeway traffic and control. Mathematical Model of Public System, 51–61.

Richards, P. I. (1956). Shock waves on the highway. Operations Research, 4(1), 42–51. https://doi.org/10.1287/opre.4.1.42

Shvetsov, V. I. (2003). Matematicheskoe modelirovanie transportnykh potokov. Avtomatika i Telemekhanika, (11), 3–46. (in Russian).

Vrubel', Yu. A. (2003). Poteri v dorozhnom dvizhenii. Minsk: BNTU. 380 p. (in Russian).

Vrubel', Yu. A., Kapskiy, D. V., Rozhanskiy, D. V., Navoy, D. V., & Kot, E. N. (2011). Koordinirovannoe upravlenie dorozhnym dvizheniem. (in Russian).

Downloads

Published

28.09.2020

How to Cite

Burinskienė, M., Kapski, D., Kasyanik, V., Pashkevich, A., Volynets, A., & Kaptsevich, O. (2020). Estimating Parameters for Traffic Flow Using Navigation Data on Vehicles. The Baltic Journal of Road and Bridge Engineering, 15(4), 1-21. https://doi.org/10.7250/bjrbe.2020-15.492