An Efficient Contact Model for Rotating Mechanism Analysis and Design in Bridge Construction

Shiping Huang, Yong Tang, Zhaoxun Yuan, Xiaopeng Cai


The rotation superstructure construction method is a widespread technique in bridge engineering. The critical issue for the successful application of this technique is the contact interface analysis and design for the rotating mechanism. A semi-analytical method predicated upon obtaining a uniform distribution of pressure on the slide plates within the interface is proposed. The surface design typically generates a nonlinear stress distribution. It leads to local damage and local asperity interlocking, which increase the contact friction dramatically during the rotation. In contrast, the proposed approach provides a surface that avoids stress concentrations and is expected to reduce the material cost of the slide plates. The proposed method is verified by the Finite Element Model. It can be used in a broad area involving contacting surface design, especially in the rotating mechanism design for bridge construction.


bridge construction; contact behaviour; friction, optimal design; rotating mechanism; slide plate

Full Text:



Abaqus, V. (2014). 6.14 Documentation. Dassault Systemes Simulia Corporation, 651, 6-2.

Banerjee, P. K., & Butterfield, R. (1981). Boundary element methods in engineering science 17, p. 578. London: McBarber, J. R., & Ciavarella, M. (2000). Contact mechanics. International Journal of Solids and Structures, 37(1-2), 29-43. S0020-7683(99)00075-X

Berman, D., Deshmukh, S. A., Sankaranarayanan, S. K., Erdemir, A., & Sumant, A. V. (2015). Macroscale superlubricity enabled by graphene nanoscroll formation. Science, 348(6239), 1118-1122.

Brebbia, C. A., & Walker, S. (2016). Boundary element techniques in engineering. Elsevier.

Bush, A. W., Gibson, R. D., & Thomas, T. R. (1975). The elastic contact of a rough surface. Wear, 35(1), 87-111.

Ciavarella, M., Joe, J., Papangelo, A., & Barber, J. R. (2019). The role of adhesion in contact mechanics. Journal of the Royal Society Interface, 16(151), 20180738.

Cody, W. J. (1965). Chebyshev approximations for the complete elliptic integrals K and E. Mathematics of Computation, 19(89), 105-112.

Greenwood, J. A., & Williamson, J. P. (1966). Contact of nominally flat surfaces. Proceedings of London. Series A. Mathematical and Physical Sciences, 295(1442), 300-319.

Hastings Jr, C., Wayward, J. T., & Wong Jr, J. P. (1955). Approximations for digital computers. Princeton University Press.

Hertz, H. (1881). On the contact of elastic solids I. Reine Angew. Mathematik, 92, 156-171.

Hertz, H. (1896). “On hardness,” Verh. Ver. Beförderung Gewerbe Fleisses 61, 1882, p. 410. Translated and reprinted in English in Hertz’s Miscellaneous Papers, Macmillan & Co, London, 1896, Ch. 6.

Huang, S. (2017). Evolution of the Contact Area with Normal Load for Rough Surfaces: from Atomic to Macroscopic Scales. Nanoscale Research Letters, 12(1), 1-8.

Huang, S., & Misra, A. (2013). Micro–macro-shear-displacement behavior of contacting rough solids. Tribology Letters, 51(3), 431-436.

Hyun, S., Pei, L., Molinari, J. F., & Robbins, M. O. (2004). Finite-element analysis of contact between elastic self-affine surfaces. Physical Review E, 70(2), 026117.

Johnson, K. L. (1985). Contact mechanics. Cambridge university press.

Longuet-Higgins, M. S. (1957a). Statistical properties of an isotropic random surface. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 250(975), 157-174.

Longuet-Higgins, M. S. (1957b). The statistical analysis of a random, moving surface. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 249(966), 321-387.

Luan, B., & Robbins, M. O. (2005). The breakdown of continuum models for mechanical contacts. Nature, 435(7044), 929-932.

Mindlin, R. D. (1953). Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics, 20(3), 327-344. (in Japanese)

Misra, A., & Huang, S. (2011). Effect of loading induced anisotropy on the shear behavior of rough interfaces. Tribology International, 44(5), 627-634.

Mo, Y., Turner, K. T., & Szlufarska, I. (2009). Friction laws at the nanoscale. Nature, 457(7233), 1116-1119.

Nayak, P. R. (1971). Random Process Model of Rough Surfaces. Journal of Lubrication Technology 93(3), 398-407.

Nayak, P. R. (1973a). Random process model of rough surfaces in plastic contact. Wear, 26(3), 305-333.

Nayak, P. R. (1973b). Some aspects of surface roughness measurement. Wear, 26(2), 165-174.

Pastewka, L., Sharp, T. A., & Robbins, M. O. (2012). Seamless elastic boundaries for atomistic calculations. Physical Review B, 86(7), 075459.

Persson, B. N. J. (2007). Relation between interfacial separation and load: a general theory of contact mechanics. Physical Review Letters, 99(12), 125502.

Sawyer, W. G., Freudenberg, K. D., Bhimaraj, P., & Schadler, L. S. (2003). A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear, 254(5-6), 573-580.

Urbakh, M., Klafter, J., Gourdon, D., & Israelachvili, J. (2004). The nonlinear nature of friction. Nature, 430(6999), 525-528.

Wang, X. (2003). Finite element method. Qing Hua University Publishing Company, Beijing. (in Chinese)

Wriggers, P., & Zavarise, G. (2004). Computational contact mechanics. Encyclopedia of Computational Mechanics.

Zhang, J., & El-Diraby, T. E. (2006). Constructability analysis of the bridge superstructure rotation construction method in China. Journal of Construction Engineering and Management, 132(4), 353-362.

DOI: 10.7250/bjrbe.2021-16.515


  • There are currently no refbacks.

Copyright (c) 2021 Shiping Huang, Yong Tang, Zhaoxun Yuan, Xiaopeng Cai

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.