Design Basis of Movable Scaffolding Systems Following American and European Code Provisions and Recommendations

Marck Anthony Mora Quispe, Leonardo Todisco, Hugo Corres Peiretti

Abstract


Construction of bridges span-by-span with Movable Scaffolding Systems (MSSs) is a very efficient and competitive technology. Normally used for spans between 25 and 70m, the technology has allowed reaching longer spans due to technological advances, specifically in bridge construction equipment. Thereby, the use of MSS has become widespread and well-accepted in a large number of locations across the USA and Europe. Nevertheless, despite its extended application, there is no single specific code provision that can explain, control, and give recommendations about all aspects of MSS during its design and usage. On the contrary, the information is spread over several documents. This paper aims at bridging this gap by providing an extensive review of code provisions and recommendations that can be valid for the MSS design. Applicability of these documents is discussed by analysing loads, safety factors, load combinations, limit states, as well as structural analysis and design. After this, a proposal of a design basis for MSS is presented for each aspect mentioned following provisions and recommendations of the considered codes.


Keywords:

bridge construction equipment; bridge construction; constructive method; design guidance; design challenges; design standards; movable scaffolding systems (MMS); structural design codes; temporary structures

Full Text:

PDF

References


ACI Committee 347. (2014). ACI 347R-14: Guide to Formwork for Concrete.

AISC (American Institute of Steel Construction). (2016a). Code of Standard Practice for Steel Buildings and Bridges.

AISC (American Institute of Steel Construction). (2016b). Specification for Structural Steel Buildings, ANSI/AISC 360-16. American Institute of Steel Construction.

Alonso, F. J. (2013). Estudo dinâmico da ação do vento em cimbres autolançáveis de grande dimensão (MS Thesis, Universidade do Porto).

American Association of State Highway and Transportation Officials (AASHTO). (2017a). AASHTO LRFD Bridge Design Specifications.

American Association of State Highway and Transportation Officials (AASHTO). (2017b). Guide Design Specifications for Bridge Temporary Works.

American Society of Civil Engineers. (2015). Design Loads on Structures during Construction. https://doi.org/10.1061/9780784413098

American Society of Civil Engineers. (2017). Minimum Design Loads and Associated Criteria for Buildings and Other Structures. https://doi.org/10.1061/9780784414248

André, J., Beale, R., & Baptista, A. (2012). Bridge Construction Equipment: An Overview of the Existing Design Guidance. Structural Engineering International, 22(3), 365–379. https://doi.org/10.2749/101686612X13363869853419

André, J., Beale, R. G., & Baptista, A. M. (2013). Recent Advances and Existing Challenges in the Design of Bridge Falsework Systems. Civil Engineering and Environmental Systems, 30(2), 130–145. https://doi.org/10.1080/10286608.2012.733374

Argüelles Álvarez, R., Argüelles Bustillo, R., Arriaga Martitegui, F., & Atienza Reales, J. R. (2005). Estructuras de acero. Cálculo (2nd ed.). BELLISCO Ediciones Técnicas y Científicas.

Asociación Española de Ingeniería Estructural. (2005). Diseño y Utilización de Cimbras. ACHE.

Boyd, J. S. (1954). Secondary Stresses in Trusses with Rigid Joints, Special Application to Glued Wooden Trusses (Doctoral Thesis, Iowa State University).

Coelho, H., Torres, A., Pacheco, P., Moreira, C., Silva, R., Soares, J. M., & Pinto, D. (2017). Fatigue Design and Prevention in Movable Scaffolding Systems. Civil and Environmental Engineering Reports, 25(2), 77–88. https://doi.org/10.1515/ceer-2017-0021

Confederación Nacional de la Construcción. (2015). Manual de Cimbras Autolanzables. Madrid.

Däbritz, M. (2011). Movable Scaffolding Systems. Structural Engineering International, 21(4), 413–418. https://doi.org/10.2749/101686611X13131377725442

Däbritz, M., & Mertinaschk, A. (2018). Rückbau von Spannbeton-Talbrücken mit Vorschubgerüst. Bautechnik, 95(1), 34–43. https://doi.org/10.1002/bate.201700105

Deutsches Institut für Normung. (2010). DIN 18218:2010-01 Frischbetondruck auf lotrechte Schlungen.

Díaz De Terán, J. R. (2013). Nuevo procedimiento constructivo de viaductos con cimbra autolanzable y nueva secuencia (Doctoral Thesis, Universidad de Cataluña).

Díaz de Terán, J. R., Haach, V. G., Turmo, J., & Jorquera-Lucerga, J. J. (2016). Improved Construction of Concrete Viaducts with Movable Scaffolding Systems in Spain. Journal of Bridge Engineering, 21(9), 04016050. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000831

European Committee for Standardization (CEN). (2005). EN 12811-1:2005 Temporary Works Equipment – Part 1: Scaffolds – Performance Requirements and General Design.

European Committee for Standardization (CEN). (2008). EN 12812:2008 Falsework – Performance Requirements and General Design.

European Committee for Standardization (CEN). (2012). EN 1991-3:2012 Eurocode 1: Actions on Structures – Part 3: Actions Induced by Cranes and Machinery.

European Committee for Standardization (CEN). (2013a). EN 1993-1-1:2013 Eurocode 3: Design of Steel Structures – Part 1-1: General Rules and Rules for Buildings.

European Committee for Standardization (CEN). (2013b). EN 1993-2:2013 Eurocode 3: Design of Steel Structures – Part 2: Steel Bridges.

European Committee for Standardization (CEN). (2016). EN 180201:2016 Formwork. General Design, Performance Requirements and Verifications.

European Committee for Standardization (CEN). (2018a). EN 1991-1-4:2018 Eurocode 1: Actions on Structures – Part 1-4: General Actions – Wind Actions.

European Committee for Standardization (CEN). (2018b). EN 1991-1-5:2018 Eurocode 1: Actions on Structures – Part 1-5: General Actions – Thermal Actions.

European Committee for Standardization (CEN). (2018c). EN 1991-1-6:2018 Eurocode 1: Actions on Structures – Part 1-6: General Actions – Actions During Execution.

European Committee for Standardization (CEN). (2018d). EN 1998-1:2018 Eurocode 8: Design of Structures for Earthquake Resistance – Part 1: General Rules, Seismic Actions and Rules for Buildings.

European Committee for Standardization (CEN). (2018e). EN 1998-2:2018 Eurocode 8: Design of Structures for Earthquake Resistance – Part 2: Bridges.

European Committee for Standardization (CEN). (2019a). EN 1990:2019 Eurocode: Basis of Structural Design.

European Committee for Standardization (CEN). (2019b). EN 1991-1-1:2019 Eurocode 1: Actions on Structures – Part 1-1: General Actions – Densities, Self-Weight, Imposed Loads for Buildings. Amendment 1: National annex.

Jacquet, P., Herrero, J. E., van der Horst, A. Q. C., Imberty, F., & Schmitt, P. (2009). Formwork and falsework for heavy construction. https://doi.org/10.35789/fib.BULL.0048

Gonçalves Bezerra, D. (2008). Studo da interacção cimbre/tabuleiro durante a betonagem em pontes construídas tramo a tramo (MS Thesis, Universidade do Porto).

Hingorani, R., & Tanner, P. (2020). Forensic Inquiry into Derailment of a Launching Gantry. Journal of Performance of Constructed Facilities, 34(1), 1–12. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001327

Korol, R. M., Rutenberg, A., & Bagnariol, D. (1986). On Primary and Secondary Stresses in Triangulated Trusses. Journal of Constructional Steel Research, 6(2), 123–142. https://doi.org/10.1016/0143-974X(86)90002-7

Leonhardt, F. (1984). Brücken. Deutsche Verlags-Anstalt GmbH.

Majewski, L. (1976). Das Vorschubgerüst für die Ahrtalbrücke. Der Bauinginieur, (51), 25–28.

Members of IABSE WG 6. (2018). Bridge Deck Erection Equipment. ICE Publishing. https://doi.org/10.1680/bdee.61934

Meskouris, K., Butenweg, C., Hinzen, K.-G., & Höffer, R. (2019). Structural Dynamics with Applications in Earthquake and Wind Engineering. Springer. https://doi.org/10.1007/978-3-662-57550-5

Mørch Larsen, T. (2011). Plate buckling in Movable Scaffolding Systems (MS. Thesis, University of Oslo).

Pacheco, P. (2008). US Patent No. 7,366,634 B2. United States Patent and Trademark Office.

Pacheco, P., Coelho, H., Borges, P., & Guerra, A. (2011). Technical Challenges of Large Movable Scaffolding Systems. Structural Engineering International, 21(4), 450–455. https://doi.org/10.2749/101686611X13131377725640

Pacheco, P., Coelho, H., Borges, P., Resende, A., & Carvalho, D. (2020). New Frontiers in Multi-Span Prestressed Concrete Deck Construction: A Case Study. Structural Engineering International, 31(1), 106-117. https://doi.org/10.1080/10168664.2020.1738906

Pacheco, P., Guerra, A., Borges, P., & Coelho, H. (2007). A Scaffolding System Strengthened with Organic Prestressing – the First of a New Generation of Structures. Structural Engineering International, 17(4), 314–321. https://doi.org/10.2749/101686607782359092

Pacheco, P., Resence, A., & Coelho, H. (2015). Multi-Span Large Bridges. In P. Pacheco & F. Magalhaes (Eds.), Multi-Span Large Bridges. CRC Press. https://doi.org/10.1201/b18567

Rosignoli, M. (2007). Robustness and Stability of Launching Gantries and Movable Shuttering Systems – Lessons Learned. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 17(2), 133–140. https://doi.org/10.2749/101686607780680673

Rosignoli, M. (2013). Bridge Construction Equipment. https://doi.org/10.1680/bce.58088

Tanner, P., & Hingorani, R. (2013). Collapse of the River Verde Viaduct Scaffolding System. In IABSE Workshop: Safety, Failures and Robustness of Large Structures (pp. 162–169). Finland, Helsinki, February 2013. https://doi.org/10.2749/222137813807018890

Vasques de Carvalho, D. S. (2008). Studo da fase de aplicação de pré-esforço em tabuleiros de pontes construídos tramo a tramo (MS Thesis, Universidade do Porto).




DOI: 10.7250/bjrbe.2021-16.528

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Marck Anthony Mora Quispe, Leonardo Todisco, Hugo Corres Peiretti

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.