Experimental Investigation of High Temperature Behaviour of an Asphalt Binder Modified with Laval University Silica Based on Multiple Stress Creep and Recovery Test
Abstract
Keywords: |
high temperature behaviour; modified asphalt binder; multiple stress creep and recovery test; nanostructured silica; non-recoverable creep compliance; recovery percent; rutting
|
Full Text: |
References
AASHTO M 332. (2019). Standard specification for performance-graded asphalt binder using multiple stress creep recovery (MSCR) test. AASHTO specifications and test methods. https://store.transportation.org/Item/PublicationDetail?ID=4595
Al-Omari, A., Taamneh, M., Khasawneh, M. A., & Al-Hosainat, A. (2020). Effect of crumb tire rubber, microcrystalline synthetic wax, and nano silica on asphalt rheology. Road Materials and Pavement Design, 21(3), 757–779. https://doi.org/10.1080/14680629.2018.1527718
Arshad, A. K., Samsudin, M. S., Masri, K. A., Karim, M. R., & Abdul Halim, A. G. (2017). Multiple stress creep and recovery of nanosilica modified asphalt binder. MATEC Web of Conferences, International Symposium on Civil and Environmental Engineering,103, Article 09005. https://doi.org/10.1051/matecconf/201710309005
Ashish, P. K., &Singh, D. (2019). Effect of Carbon Nano Tube on performance of asphalt binder under creep-recovery and sustained loading conditions. Construction and Building Materials, 215, 523–543. https://doi.org/10.1016/j.conbuildmat.2019.04.199
ASTM D7405. (2015). Standard test method for multiple stress creep and recovery (MSCR) of asphalt binder using a dynamic shear rheometer. ASTM International. https://www.astm.org/Standards/D7405.htm
Babagoli, R., Vamegh, M., & Mirzababaei, P. (2018). Laboratory evaluation of the effect of SBS and Lucobite on performance properties of bitumen. Petroleum Science and Technology, 37(3), 255–260. https://doi.org/10.1080/10916466.2018.1539748
Bahrami, Z., Badiei, A., Atyabi, F., Darabi, H. R., & Mehravi, B. (2015). Piperazine and its carboxylic acid derivatives-functionalized mesoporous silica as nanocarriers for gemcitabine: Adsorption and release study. Materials Science and Engineering: C,49, 66–74. https://doi.org/10.1016/j.msec.2014.12.069
Beck, J. et al. (1992). Synthesis of mesoporous crystalline material (Google patentUS5108725). https://patents.google.com/patent/US5108725A/en
Bonneviot, L., Morin, M., & Badiei, A. (2003). Mesostructured metal or non-metal oxides and method for making same (US Patent 0133868).
D’Angelo, J. (2009). The relationship of the MSCR test to rutting. Road Materials and Pavement Design, 10, 61–80. https://doi.org/10.1080/14680629.2009.9690236
Delgadillo, R., Cho, D. W., & Bahia, H. (2006). Nonlinearity of repeated creep and recovery binder test and relationship with mixture permanent deformation. Transportation Research Record: Journal of the Transportation Research Board, 1962(1), 2–11. https://doi.org/10.1177/0361198106196200101
Dong, Z., Zhou, T., Luan, H., Williams, R. C., Wang, P., & Leng, Z. (2019). Composite modification mechanism of blended bio-asphalt combining styrene butadiene-styrene with crumb rubber: A sustainable and environmental friendly solution for wastes. Journal of Cleaner Production, 214, 593–605. https://doi.org/10.1016/j.jclepro.2019.01.004
Fischer, H. R., & Cernescu, A. (2015). Relation of chemical composition to asphalt microstructure – Detailsand properties of micro-structures in bitumen as seen by thermal and friction force microscopy and byscanning near-filed optical microscopy. Fuel, 153, 628–633. https://doi.org/10.1016/j.fuel.2015.03.043
Ghanoon, S. A., &Tanzadeh, J. (2019). Laboratory evaluation of nano-silica modification on rutting resistance of asphalt binder. Construction and Building Materials, 223, 1074–1082. https://doi.org/10.1016/j.conbuildmat.2019.07.295
Ghasemi, M., Marandi, S. M., Tahmooresi, M., Jalalkamali, R., & Taherzade, R. (2012). Modification of stone matrix asphalt with nano-SiO2. Journal of Basic and Applied Scientific Research, 2(2), 1338–1344.
Han L., Zheng M., Li J., Li Y., Zhu Y., & Ma Q. (2017). Effect of nano silica and pretreated rubber on the properties of terminal blend crumb rubber modified asphalt. Construction and Building Materials, 157, 277−291. https://doi.org/10.1016/j.conbuildmat.2017.08.187
Laukkanen, O.-V., Soenen, H., Pellinen, T., Heyrman, S., & Lemoine, G. (2014). Creep-recovery behaviour of bituminous binders and its relation to asphalt mixture rutting. Materials and Structures, 48, 4039–4053. https://link.springer.com/article/10.1617/s11527-014-0464-7
Lei, Z., Chao, X., Fei, G., Tian-shuai, L., &Yi-qiu, T. (2016). Using DSR and MSCR tests to characterize high temperature performance of different rubber modified asphalt. Construction and Building Materials, 127, 466–474. https://doi.org/10.1016/j.conbuildmat.2016.10.010
Li, R., Xiao, F., Amirkhanian, S., You, Z., & Huang, J. (2017). Developments of nano materials and technologies on asphalt materials – A review. Construction and Building Materials, 143, 633–648. https://doi.org/10.1016/j.conbuildmat.2017.03.158
Lin, P., Yan, C., Huang, W., Li, Y., Zhou, L., Tang, N., Xiao, F., Zhang, Y., & Quan, L. (2019). Rheological, chemical and aging characteristics of high content polymer modified asphalt. Construction and Building Materials, 207, 616−629. https://doi.org/10.1016/j.conbuildmat.2019.02.086
Lv, Q., Huang, W., Sadek, H., Xiao, F., & Yan, C. (2019). Investigation of the rutting performance of various modified asphalt mixtures using the Hamburg Wheel-Tracking Device test and Multiple Stress Creep Recovery test. Construction and Building Materials, 206, 62–70. https://doi.org/10.1016/j.conbuildmat.2019.02.015
Mansourian, A., Rezazad, G. A., Karimian, K. F. (2019). Performance evaluation of asphalt binder modified with EVA/HDPE/nanoclay based on linear and non-linear viscoelastic behaviors. Construction and Building Materials, 208, 554−563. https://doi.org/10.1016/j.conbuildmat.2019.03.065
Marinho Filho, P. G. T., Rodrigues dos Santos, A. T., Lucena, L. C. F. L., & Neto, V. F. de S. (2019). Rheological evaluation of asphalt binder 50/70 incorporated with titanium dioxide nanostructured particles. Journal of Materials in Civil Engineering, 31(10). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002885
Moeini, A. R., Badiei, A., & Rashidi, A. M. (2019). Effect of nanosilica morphology on modification of asphalt binder. Road Materials on Pavement Design, 21(8), 2230–2246. https://doi.org/10.1080/14680629.2019.1602072
Navarro, F., Tauste, R., Sol-Sánchez, M., & Rubio-Gámez, M.C. (2019). New approach for characterising the performance of asphalt binders through the multiple stress creep and recovery test. Road Materials and Pavement Design, 20(sup1), S500–S520. https://doi.org/10.1080/14680629.2019.1595094
Saltan, M., Terzi, S., & Karahancer, S. (2017). Examination of hot mix asphalt and binder performance modified with nano silica. Construction and Building Materials, 156, 976–984. https://doi.org/10.1016/j.conbuildmat.2017.09.069
Saltan, M., Terzi, S., & Karahancer, S. (2018). Performance analysis of nano modified bitumen and hot mix asphalt. Construction and Building Materials, 173, 228−237. https://doi.org/10.1016/j.conbuildmat.2018.04.014
Shafabakhsh, G. H., & Ani, O. J. (2015). Experimental investigation of effect of nano TiO2/SiO2 modifiedbitumen on the rutting and fatigue performance of asphalt mixtures containing steel slag aggregates. Construction and Building Materials, 98, 692–702. https://doi.org/10.1016/j.conbuildmat.2015.08.083
Shafabakhsh, G.H., Jafari Ani, O., & Mirabdolazimi, S.M. (2015). Experimental investigation on rutting performance of micro silica modified asphalt mixtures. International Journal of Engineering Research& Technology, 4(1), 371–378.
Shafabakhsh, G.A., Motamedi, M., Firouznia, M., & Isazadeh, M. (2019). Experimental investigation of the effect of asphalt binder modified with nanosilica on the rutting, fatigue and performance grade. Petroleum Science and Technology, 37(13), 1495–1500. https://doi.org/10.1080/10916466.2018.1476534
Shi, X., Cai, L., Xu, W., Fan, J., & Wang, X. (2018). Effects of nano-silica and rock asphalt on rheological properties of modified bitumen. Construction and Building Materials, 161, 705–714. https://doi.org/10.1016/j.conbuildmat.2017.11.162
Sun, L., Xin, X., & Ren, J. (2017). Asphalt modification using nano-materials and polymers composite considering high and low temperature performance. Construction and Building Materials, 133, 358–366. https://doi.org/10.1016/j.conbuildmat.2016.12.073
Taherkhani, H., & Afroozi, S. (2016). The properties of nanosilica-modified asphalt cement. Petroleum Science and Technology, 34(15), 1381−1386. https://doi.org/10.1080/10916466.2016.1205604
Tang, J., Zhu, C., Zhang, H., Xu, G., Xiao, F., & Amirkhanian, S. (2019). Effect of liquid ASAs on the rheological properties of crumb rubber modified asphalt. Construction and Building Materials, 194, 238−246. https://doi.org/10.1016/j.conbuildmat.2018.11.028
Villacorta, F., & Nordcbeck, A. (2019). Optimum content of nano-silica to ensure proper performance of an asphalt binder. Road Materials and Pavement Design, 20(2), 414–425. https://doi.org/10.1080/14680629.2017.1385510
Wang, C., & Wang, Y. (2019). Physico-chemo-rheological characterization of neat and polymer-modified asphaltbinders. Construction and Building Materials, 199, 471–482. https://doi.org/10.1016/j.conbuildmat.2018.12.064
Wanyika, H. (2013). Sustained release of fungicide metalaxyl by mesoporous silica nanospheres. Journal of Nanoparticle Research, 15(8), 1–9. https://link.springer.com/article/10.1007/s11051-013-1831-y
Yang, J., & Tighe, S. (2013). A review of advances of nanotechnology in asphalt mixtures. Procedia – Social and Behavioral Sciences, 96, 1269–1276. https://doi.org/10.1016/j.sbspro.2013.08.144
Yang, Q., Liu, Q., Zhong, J., Hong, B., Wang, D., & Oeser, M. (2019). Rheological and micro-structural characterization of bitumen modified with carbon nanomaterials. Construction and Building Materials, 201, 580−589. https://doi.org/10.1016/j.conbuildmat.2018.12.173
Zhou, Z., Gu, X., Dong, Q., Ni, F., & Jiang, Y. (2019). Rutting and fatigue cracking performance of SBS-RAP blended binders with a rejuvenator. Construction and Building Materials, 203, 294–303. https://doi.org/10.1016/j.conbuildmat.2019.01.119
DOI: 10.7250/bjrbe.2022-17.551
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Reza Fallah, Gholamali Shafabakhsh, Zohreh Bahrami

This work is licensed under a Creative Commons Attribution 4.0 International License.