Effects of Reclaimed Asphalt, Wax Additive, and Compaction Temperature on Characteristics and Mechanical Properties of Porous Asphalt

Vittorio Ranieri, Nicola Berloco, Francesca Garofalo, Liang He, Paolo Intini, Karol J. Kowalski


This paper describes physical and mechanical properties of porous asphalt mixtures with various RAP amount (0%, 10%, 20%, 30%) containing one WMA additive (organic wax). The samples were prepared using the Marshall compactor at two different temperatures (125 °C, 145 °C) by fabricating six series of porous mixtures. Air void content, particle loss, stiffness modulus, indirect tensile strength, and indirect tensile strength ratio were measured and the effects of RAP, wax, and compaction temperatures were evaluated, considering the results of statistical analyses. Based on the performed tests, it has been concluded that high RAP contents (30%) in WMA-RAP PAs result in decreased porosity, permeability, and moisture resistance, and in increased cohesiveness, stiffness, and indirect tensile strength compared to the reference PAs. On the other hand, for low RAP contents (10%), WMA-RAP PAs show lower cohesiveness and indirect tensile strength, at the same time demonstrating an increase in porosity, permeability, moisture resistance, and stiffness. Reduced compaction temperatures (125 °C) particularly affect the cracking resistance.


porous asphalt; reclaimed asphalt pavement; sustainable asphalt mixture; warm mix asphalt technology; wax add

Full Text:



Al-Qadi, I. L, Elseifi, M., & Carpenter, S. H. (2007). Reclaimed asphalt pavement – A literature review (Report no. FHWA-ICT-07-001). Illinois Center for Transportation. https://www.ideals.illinois.edu/items/46016

Behnood, A., Olek, J., & Glinicki, M. A. (2015). Predicting modulus elasticity of recycled aggregate concrete using M5′ model tree algorithm. Construction and Building Materials, 94, 137–147. https://doi.org/10.1016/j.conbuildmat.2015.06.055

Capitão S. D., Picado-Santos L. G., & Martinho F. (2012). Pavement engineering materials: Review on the use of warm-mix asphalt. Construction and Building Materials, 36, 1016–1024. https://doi.org/10.1016/j.conbuildmat.2012.06.038

Chen, J. Y., & Wang, K. (2013). Study on water stability of warm mix drainage asphalt with Sasobit. In Advanced Materials Research, 798–799, (pp. 178–181). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.798-799.178

Cheraghian, G., Falchetto, A. C., You, Z., Chen, S., Kim, Y. S., Westerhoff, J., Moon, K. H., & Wistuba, M. P. (2020). Warm mix asphalt technology: An up to date review. Journal of Cleaner Production, 268, Article 122128. https://doi.org/10.1016/j.jclepro.2020.122128

Choudhary, R., Julaganti, A., Kumar, A., & Ugale, D. A. (2018). Application of WMA technology to bituminous base course mixes. The Baltic Journal of Road and Bridge Engineering, 13(2), 94–103. https://doi.org/10.7250/bjrbe.2018-13.403

Čygas, D., Mučinis, D., Sivilevičius, H., & Abukauskas, N. (2011). Dependence of the recycled asphalt mixture physical and mechanical properties on the grade and amount of rejuvenating bitumen. The Baltic Journal of Road and Bridge Engineering, 6(2), 124–134. https://doi.org/10.3846/bjrbe.2011.17

Frigio, F., & Canestrari, F. (2018). Characterisation of warm recycled porous asphalt mixtures prepared with different WMA additives. European Journal of Environmental and Civil Engineering, 22(1), 82–98. https://doi.org/10.1080/19648189.2016.1179680

Frigio, F., Pasquini, E., Ferrotti, G., & Canestrari, F. (2013). Improved durability of recycled porous asphalt. Construction and Building Materials, 48, 755–763. https://doi.org/10.1016/j.conbuildmat.2013.07.044

Frigio, F., Raschia, S., Steiner, D., Hofko, B., & Canestrari, F. (2016). Aging effects on recycled WMA porous asphalt mixtures. Construction and Building Materials, 123, 712–718. https://doi.org/10.1016/j.conbuildmat.2016.07.063

Frigio, F.; Pasquini, E.; Partl, M. N.; Canestrari, F. (2014). Use of reclaimed asphalt in porous asphalt mixtures: Laboratory and field evaluations. Journal of Transportation Engineering, 27, Article 04014211. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001182

Frigio, F., Stimilli, A., Virgili, A., & Canestrari, F. (2017). Performance assessment of plant-produced warm recycled mixtures for open-graded wearing courses. Transportation Research Record, 2633(1), 16–24. https://doi.org/10.3141/2633-04

Gao, Y., Huang, X., & Yu, W. (2014). The compaction characteristics of hot mixed asphalt mixtures. Journal of Wuhan University of Technology-Mater. Sci. Ed., 29(5), 956–959. https://doi.org/10.1007/s11595-014-1027-z

Garcia, A., Aboufoul, M., Asamoah, F., & Jing, D. (2019). Study the influence of the air void topology on porous asphalt clogging. Construction and Building Materials, 227, Article 116791. https://doi.org/10.1016/j.conbuildmat.2019.116791

Goh, S. W., & You, Z. (2012). Mechanical properties of porous asphalt pavement materials with warm mix asphalt and RAP. Journal of Transportation Engineering, 138(1), 90–97. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000307

Guo, M., Liu, H., Jiao, Y., Mo, L., Tan, Y., Wang, D., & Liang, M. (2020). Effect of WMA-RAP technology on pavement performance of asphalt mixture: A state-of-the-art review. Journal of Cleaner Production, 266, Article 121704. https://doi.org/10.1016/j.jclepro.2020.121704

Guo, N., You, Z., Zhao, Y., Tan, Y., & Diab, A. (2014). Laboratory performance of warm mix asphalt containing recycled asphalt mixtures. Construction and Building Materials, 64, 141–149. https://doi.org/10.1016/j.conbuildmat.2014.04.002

Hettiarachchi, C., Hou, X., Wang, J., & Xiao, F. (2019). A comprehensive review on the utilization of reclaimed asphalt material with warm mix asphalt technology. Construction and Building Materials, 227, Article 117096. https://doi.org/10.1016/j.conbuildmat.2019.117096

Hill, B., Behnia, B., Buttlar, W. G., & Reis, H. (2013). Evaluation of warm mix asphalt mixtures containing reclaimed asphalt pavement through mechanical performance tests and an acoustic emission approach. Journal of Materials in Civil Engineering, 25(12), 1887–1897. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000757

Hurley, G. C., & Prowell, B. D. (2005). Evaluation of Sasobit® for use in warm mix asphalt (NCAT Report 05-06). National Center for Asphalt Technology. https://www.eng.auburn.edu/research/centers/ncat/files/reports/2005/ rep05-06.pdf

Jamshidi, A., Hamzah, M. O., & You, Z. (2013). Performance of Warm Mix Asphalt containing Sasobit®: state of the art. Construction and Building Materials, 38, 530–553. https://doi.org/10.1016/j.conbuildmat.2012.08.015

Kowalski, K. J., Bańkowski, W., Król, J. B., Gajewski, M., Horodecka, R., & Świeżewski, P. (2016). Selection of quiet pavement technology for Polish climate conditions on the example of CiDRO project. Transportation Research Procedia, 14, 2724–2733. https://doi.org/10.1016/j.trpro.2016.05.453

Kowalski, K. J., Brzeziński, A. J., Król, J. B., Radziszewski, P., & Szymański, Ł. (2015). Traffic analysis and pavement technology as a tool for urban noise control. Archives of Civil Engineering, 4(LXI), 107–125. https://doi.org/10.1515/ace-2015-0039

Kowalski, K. J., McDaniel, R. S., Shah, A., & Olek, J. (2009). Long-term monitoring of noise and frictional properties of three pavements: Dense-graded asphalt, stone matrix asphalt, and porous friction course. Transportation Research Record: Journal of the Transportation Research Board, 2127(1), 12–19. https://doi.org/10.3141/2127-02

Kowalski, K. J., McDaniel, R. S., & Olek, J. (2016). Reclaimed asphalt pavement limits to meet surface frictional requirements. Journal of Materials in Civil Engineering, 28(1). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001323

Król, J. (2014). Research into compaction homogeneity of asphalt concrete by applying image analysis. Road and Bridges – Drogi i Mosty, 13(1), 69–85. https://www.rabdim.pl/index.php/rb/article/view/v13n1p69

Król, J. B., Khan, R., & Collop, A. C. (2018). The study of the effect of internal structure on permeability of porous asphalt. Road Materials and Pavement Design, 19(4), 935–951. https://doi.org/10.1080/14680629.2017.1283355

Król, J. B., Kowalski, K. J., Radziszewski, P., Sarnowski. M. (2015). Rheological behaviour of n-alkane modified bitumen in aspect of warm mix asphalt technology. Construction and Building Materials, 93, 703–710. https://doi.org/10.1016/j.conbuildmat.2015.06.033

Lee, H. D., Van Winkle, C., Mokhtari, A., Ahmed, T., Kim, H., Williams, C., Tang, S. (2015). Development of quality standards for inclusion of high recycled asphalt pavement content in asphalt mixtures-phase II (Report No. TR-658). The National Academies of Sciences, Engineering, Medicine. https://rosap.ntl.bts.gov/view/dot/28702

Li, X., Xie, Z., Fan, W., Wang, L., & Shen, J. (2015). Selecting warm mix asphalt additives by the properties of warm mix asphalt mixtures ‒ China experience. The Baltic Journal of Road and Bridge Engineering, 10(1), 79–88. https://doi.org/10.3846/bjrbe.2015.10

Mallick, R. B., Kandhal, P. S., & Bradbury, R. L. (2008). Using WMA technology to incorporate high percentage of RAP material in asphalt mixtures. Transportation Research Record: Journal of the Transportation Research Board, 2051(1), 71–79. https://doi.org/10.3141/2051-09

Middleton, B., & Forfylow, R. W. (2009). Evaluation of warm-mix asphalt produced with the double barrel green process. Transportation Research Record: Journal of the Transportation Research Board, 2126(1), 19–26. https://doi.org/10.3141/2126-03

Oner, J., & Sengoz, B. (2015). Utilization of recycled asphalt concrete with warm mix asphalt and cost-benefit analysis. PLoS One, 10(1), Article e116180. https://doi.org/10.1371/journal.pone.0116180

Praticò, F. G., Vaiana, R., & Giunta, M. (2013). Pavement sustainability: permeable wearing courses by recycling porous European mixes. Journal of architectural engineering, 19(3), 186–192. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000127

Radziszewski, P., Nazarko, J., Vilutiene, T., Dębkowska, K., Ejdys, J., Gudanowska, A., Halicka, K., Kilon, J., Kononiuk, A., Kowalski, K., Król, J., Nazarko, L., & Sarnowski, M. (2016). Future trends in road pavement technologies development in the context of environmental protection. The Baltic Journal of Road and Bridge Engineering, 11(2), 160–168. https://doi.org/10.3846/bjrbe.2016.19

Ranieri, V. (2002). Runoff control in porous pavement. Transportation Research Record: Journal of the Transportation Research Board, 1789(1), 46–55. https://doi.org/10.3141/1789-05

Ranieri, V., Colonna, P, Ying, G., & Sansalone, J. (2014). Model of flow regimens in porous pavement and porous friction courses. Transportation Research Record: Journal of the transportation research board, 2436(1), 156–166. https://doi.org/10.3141/2436-16

Ranieri, V., Kowalski, K., Berloco, N., Colonna, P., & Perrone, P. (2017). Influence of wax additives on the properties of porous asphalts. Construction and Building Materials, 145, 261–271. https://doi.org/10.1016/j.conbuildmat.2017.03.181

Ranieri, V., Sansalone, J. J., & Shuler, S. (2010). Relationships among gradation curve, clogging resistance, and pore-based indices of porous asphalt mixes. Road Materials and Pavement Design, 11(sup1), 507–525. https://doi.org/10.1080/14680629.2010.9690344

Riekstins, A., Haritonovs, V., & Straupe, V. (2020). Life cycle cost analysis and life cycle assessment for road pavement materials and reconstruction technologies. The Baltic Journal of Road and Bridge Engineering, 15(5), 118–135. https://doi.org/10.7250/bjrbe.2020-15.510

Sanchez-Alonso, E., Castro-Fresno, D., Vega-Zamanillo, A., & Rodriguez-Hernandez, J. (2011). Sustainable asphalt mixes: use of additives and recycled materials. The Baltic Journal of Road and Bridge Engineering, 6(4), 249–257. https://doi.org/10.3846/bjrbe.2011.32

Santos, J., Ferreira, A., & Flintsch, G. (2017). A multi-objective optimization-based pavement management decision-support system for enhancing pavement sustainability. Journal of Cleaner Production, 164, 1380–1393. https://doi.org/10.1016/j.jclepro.2017.07.027

Su, Y., Hossiney, N., Tia, M., & Bergin, M. (2014). Mechanical properties assessment of concrete containing reclaimed asphalt pavement using the superpave indirect tensile strength test. Journal of Testing and Evaluation, 42(4), 912–920. https://doi.org/10.1520/JTE20130093

Tao, M., & Mallick, R. B. (2009). Effects of warm-mix asphalt additives on workability and mechanical properties of reclaimed asphalt pavement material. Transportation Research Record: Journal of the Transportation Research Board, 2126(1), 151–160. https://doi.org/10.3141/2126-18

Tatari, O., Nazzal, M., & Kucukvar, M. (2012). Comparative sustainability assessment of warm-mix asphalts: a thermodynamic based hybrid life cycle analysis. Resources, conservation and recycling, 58, 18–24. https://doi.org/10.1016/j.resconrec.2011.07.005

Watson, D. E., Cooley, L. A., Moore, A. K., & Williams, K. (2004). Laboratory performance testing of open-graded friction course mixtures. Transportation Research Record: Journal of the Transportation Research Board, 1891(1), 40–47. https://doi.org/10.3141/1891-06

Xiao, F., Putman, B., & Amirkhanian, S. (2015). Rheological characteristics investigation of high percentage RAP binders with WMA technology at various aging states. Construction and Building Materials, 98, 315–324. https://doi.org/10.1016/j.conbuildmat.2015.08.114

DOI: 10.7250/bjrbe.2022-17.575


  • There are currently no refbacks.

Copyright (c) 2022 Vittorio Ranieri, Nicola Berloco, Francesca Garofalo, Liang He, Paolo Intini, Karol J. Kowalski

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.