A Study on Frequency Response Functions in Pavement Engineering

Filippo G. Pratico, Gianfranco Pellicano, Matteo Bolognese, Gaetano Licitra


Mechanical impedance (MI) defines the ability of a system to vibrate as a consequence of force application. In the recent years, the correlation of this parameter with tire-road noise and other characteristics has gained certain attention. Nevertheless, the information about this topic is still insufficient. Usually, the force is set through an impulse hammer as a master and the acceleration is measured through an accelerometer as a response in order to measure the corresponding Frequency Response Function (FRF). The objectives of the study presented in this paper are i) to analyse the differences between the axial mechanical impedance (complex ratio of force and velocity referred to the same point, named driving-point impedance) and the non-axial mechanical impedance (complex ratio of the force at the point i and velocity at the point j, named transfer impedance); ii) to analyse the effect of adding crumb rubber (2% by mixture weight) and of the percentage of bitumen on the mechanical impedance for the bituminous samples. Therefore, laboratory tests on asphalt concrete specimens have been performed, using an instrumentation system composed of i) an impact hammer reporting the impact force value; ii) an impedance head measuring the direct impact force and the direct acceleration at the hitting point location; iii) a piezoelectric accelerometer measuring the transfer acceleration at a certain distance from the hitting point location. Results demonstrate that the ratio between the repeatability and the average is quite constant, while for heights higher than 10 cm, also MI tends to be independent on the height. A number of recommendations have been made based on the results of the present research. 


crumb rubber; driving-point impedance; frequency response function; impact hammer; mechanical impedance; transfer impedance

Full Text:



AASHTO M 323. (2017). Standard specification for superpave volumetric mix design. https://global.ihs.com/doc_detail.cfm?document_name=AASHTO%20M%20323&item_s_key=00488656

ASTM E965-15. (2019). Standard test method for measuring pavement macrotexture depth using a volumetric technique. https://doi.org/10.1520/E0965-15R19

Alani, H. M. H., Albayati, H. A., and Abbas, S. A. (2010). The transition to a PG grading system for asphalt cement in Iraq. Journal of Engineering, 16(4), 5911–5931. https://www.iasj.net/iasj/download/c881cacd0e6cafdf

Bede, N., & Kožar, I. (2016). Determination of dynamic modulus of elasticity of concrete by impact hammer. HDKBR INFO Magazin, 6(1), 8–11. https://hrcak.srce.hr/170434

Bendtsen, H., Olesen, E., Pigasse, G., Andersen, B., Raaberg, J., Kalman, B., & Cesbron, J. (2013). Measurements at the Arnakke test site with small PERS sections. PERSUADE European Project, Seventh Framework Programme (Contract No. 226313- Measurement report).

Bocci, E., & Prosperi, E. (2020). Recycling of reclaimed fibers from end-of-life tires in hot mix asphalt. Journal of Traffic and Transportation Engineering (English Edition), 7(5), 678–687. https://doi.org/10.1016/j.jtte.2019.09.006

Brown, D. L., Allemang, R. J., & Phillips, A. W. (2015). Forty years of use and abuse of impact testing: A practical guide to making good FRF measurements. In J. De Clerck (ed.), Experimental Techniques, Rotating Machinery, and Acoustics. Conference Proceedings of the Society for Experimental Mechanics Series, 8, (pp. 221–241). Springer, Cham. https://doi.org/10.1007/978-3-319-15236-3_21

Bruel & Kjaer. (2018). Impact hammer - type 8206. https://www.bksv.com/en/transducers/vibration/impact-hammers/8206

Buzdugan, Gh., Mihâilescu, E., & Rades, M. (1986). Vibration measurement. Springer Nature Customer Service Center LLC.

Cambpell, J. L., & Jurist, J. M. (1971). Mechanical impedance of the femur: a preliminary report. Journal of Biomechanics, 4(5), 319–322. https://doi.org/10.1016/0021-9290(71)90052-2

Cesbron, J., Bianchetti, S., Pallas, M.-A., Praticò, F. G., Fedele, R., Pellicano, G., Moro, A., & Bianco, F. (2021). Acoustical characterization of low-noise prototype asphalt concretes for electric vehicles. Euronoise 2021 Conference. https://hal.science/hal-03423303/document

Clem, D. J., Popovics, J. S., Schumacher, T., Oh, T., Ham, S., & Wu, D. (2013). Understanding the impulse response method applied to concrete bridge decks. AIP Conference Proceedings, 1511(1), 1333–1340. https://doi.org/10.1063/1.4789197

Coermann, R. R. (1962). The mechanical impedance of the human body in sitting and standing position at low frequencies. Human Factors: The Journal of the Human Factors and Ergonomics Society, 4(5), 227–253. https://doi.org/10.1177/001872086200400502

Corliss, E. L. R., & Koidan, W. (1955). Mechanical impedance of the forehead and mastoid. The Journal of the Acoustical Society of America, 27(6), 1164–1172. https://doi.org/10.1121/1.1908150

Czech, K. R., & Gardziejczyk, W. (2022). Investigation of the dynamic stiffness of poroelastic and asphalt concrete layers under in situ and laboratory conditions. Materials, 15(5), Article 1821. https://doi.org/10.3390/ma15051821

de León, G., del Pizzo, A., Teti, L., Moro, A., Bianco, F., Fredianelli, L., & Licitra, G. (2020). Evaluation of tyre/road noise and texture interaction on rubberised and conventional pavements using CPX and profiling measurements. Road Materials and Pavement Design, 21(sup1), S91–S102. https://doi.org/10.1080/14680629.2020.1735493

EN 12697-36. (2006). Bituminous mixtures – Test methods for hot mix asphalt – Part 36: Determination of the thickness of a bituminous pavement.

EN 13036-1. (2010). Road and airfield surface characteristics. Test methods. Measurement of pavement surface macrotexture depth using a volumetric patch technique.

EN 29052-1. (1992). Acoustics – Method for the determination of dynamic stiffness – Part 1: Materials used under floating floors in dwellings.

Fedele, R., Praticò, F. G., Carotenuto, R., & Della Corte, F. G. (2017). Instrumented infrastructures for damage detection and management. 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). Naples, Italy, 26–28 June 2017. https://doi.org/10.1109/MTITS.2017.8005729

Ferrari, P., & Giannini, F. (2000). Ingegneria stradale – Corpo stradale e pavimentazioni (1st ed.). Isedi.

Gatscher, J. A. & Kawiecki, G. (1994). Mechanical Impedance Methods for Vibration Simulation. American Institute of Aeronautics and Astronautics.

Gerdeen, J. W. (1975). Mechanical impedance techniques applied to measuring the complex modulus of bone. http://lib.dr.iastate.edu/rtd

Gil-Abarca A., Vázquez V. F., García-Hoz A. M., Terán F., & Paje S. E. (2021, October). Dynamic stiffness assessment of rubberized bituminous mixtures. Euronoise 2021. http://www.sea-acustica.es/fileadmin/Madeira21/ID133.pdf

Griffin, M. J. (2001). Whole-body vibration. Encyclopedia of Vibration, 2001, 1570–1578. https://doi.org/10.1006/rwvb.2001.0082

Gucunski, N., Imani, A., Romero, F., Nazarian, S., Yuan, D., Wiggenhauser, H., Shokouhi, P., Taffe, A., & Kutrubes, D. (2013). Nondestructive testing to identify concrete bridge deck deterioration. National Academies of Sciences, Engineering, and Medicine. The National Academies Press. https://doi.org/10.17226/22771

Hamet, J.-F., & Klein, P. (2004). Road stiffness influence on rolling noise: Parametric study using a rolling tire model. https://hal.archives-ouvertes.fr/hal-00546101

Harris, C. M., Piersol, A. G. (2002). Harris’ shock and vibration handbook. McGraw-Hill.

ISO 5725-1. (1994). Accuracy (trueness and precision) of measurement methods and results: General principles and definitions.

Kweon, G., & Kim, Y. R. (2006). Determination of asphalt concrete complex modulus with impact resonance test. Transportation Research Record: Journal of the Transportation Research Board, 1970(1), 151–160. https://doi.org/10.1177/0361198106197000116

Li, M., Molenaar, A. A. A., van de Ven, M. F. C., & van Keulen, W. (2012). Mechanical impedance measurement on thin layer surface with impedance hammer device. Journal of Testing and Evaluation, 40(5), Article 20120089. https://doi.org/10.1520/jte20120089

Li, M., van Keulen, W., Ceylan, H., Cao, D., van de Ven, M., & Molenaar, A. (2016). Pavement stiffness measurements in relation to mechanical impedance. Construction and Building Materials, 102(1), 455–461. https://doi.org/10.1016/j.conbuildmat.2015.10.191

Merenda, M., Praticò, F. G., Fedele, R., Carotenuto, R., & della Corte, F. G. (2019). A real-time decision platform for the management of structures and infrastructures. Electronics, 8(10), Article 1180. https://doi.org/10.3390/electronics8101180

Mizrahi, J. (2015). Mechanical impedance and its relations to motor control, limb dynamics, and motion biomechanics. Journal of Medical and Biological Engineering, 35(1), 1–20. https://doi.org/10.1007/s40846-015-0016-9

Morcillo, M. A., Hidalgo, M. E., Pastrana, M. del C., García, D., Torres, J., & Arroyo, M. B. (2019). Life Soundless: New generation of eco-friendly asphalt with recycled materials. Environments, 6(4), Article 48. https://doi.org/10.3390/environments6040048

Mun, S. (2015). Determining the dynamic modulus of a viscoelastic asphalt mixture using an impact resonance test with damping effect. Research in Nondestructive Evaluation, 26(4), 189–207. https://doi.org/10.1080/09349847.2015.1023914

Olesen, H. P. (1972). Measurement of the Dynamic Properties of Materials and Structures, Brüel & Kjær Application Notes. https://www.bksv.com/media/doc/17-180.pdf

Olesen, H. P., Randall, R. B. (1979). A Guide to Mechanical Impedance and Structural Response Techniques Structural Response Techniques, Brüel & Kjaer Application Note 17-179.

Oyadiji, S. O., & Tomlinson, G. R. (1994). Relating the complex moduli of viscoelastic materials to the complex stiffness of antivibration mounts. Proc. SPIE 2193, Smart Structures and Materials 1994: Passive Damping, C. D. Johnson (ed.), 2193, 226–237. https://doi.org/10.1117/12.174099

Pimentel, R., Guedes, T., Melo, L., Ferreira, G., & Gonçalves, M. (2017). Damage detection assessment in reinforced concrete slabs using impact tests. Procedia Engineering, 199, 1976–1981. https://doi.org/10.1016/j.proeng.2017.09.307

Policarpo, H., Neves, M. M., Luis, J., Coelho, B., Neves, M. M., Maia, N. M. M., Bento Coelho, J. L., Gerges, S. N. Y., & Viveiros, E. (2010). On the determination of dynamic properties of resilient materials using a multilaminated periodic specimen. 17th International Congress on Sound and Vibration. https://www.researchgate.net/publication/235911170_On_the_determination_of_dynamic_properties_of_resilient_materials_using_a_multilaminated_periodic_specimen

Praticò, F. G. (2007). Quality and timeliness in highway construction contracts: A new acceptance model based on both mechanical and surface performance of flexible pavements. Construction Management and Economics, 25(3), 305–313. https://doi.org/10.1080/01446190601042426

Praticò, F. G., Fedele, R., & Pellicano, G. (2021a). Monitoring Road Acoustic and Mechanical Performance. In P. Rizzo, & A. Milazzo (Eds.), European Workshop on Structural Health Monitoring. EWSHM 2020. Lecture Notes in Civil Engineering, 127 (pp. 594–602). Springer, Cham. https://doi.org/10.1007/978-3-030-64594-6_58

Praticò, F. G., Fedele, R., & Pellicano, G. (2021b). Pavement FRFs and noise: A theoretical and experimental investigation. Construction and Building Materials, 294, Article 123487. https://doi.org/10.1016/j.conbuildmat.2021.123487

Praticò, F. G., Pellicano, G., & Fedele, R. (2021c, October 25). Low-noise road mixtures for electric vehicles. EuroNoise 2021.

Praticò, F. G., & Vaiana, R. (2012). Improving infrastructure sustainability in suburban and urban areas: Is porous asphalt the right answer? And how? WIT Transactions on the Built Environment, 128, 673–684. https://doi.org/10.2495/UT120571

Radenberg, M., Drewes, B., & Manke, R. (2017). Noise reducing effect of new dense asphalt layers. 6th Eurasphalt & Eurobitume Congress, Prague, Czech Republic.

Schubert, S., Gsell, D., Steiger, R., & Feltrin, G. (2010). Influence of asphalt pavement on damping ratio and resonance frequencies of timber bridges. Engineering Structures, 32(10), 3122–3129. https://doi.org/10.1016/j.engstruct.2010.05.031

Shell International Petroleum Company Limited. (1978). Shell pavement design manual: Asphalt pavements and overlays for road traffic. Shell International Petroleum.

Skov, R. S. H., Bendtsen, H., Raaberg, J., & Cesbron, J. (2015). Laboratory measurements on slabs from full scale PERS test sections. EuroNoise 2015, 1339–1344. https://www.conforg.fr/euronoise2015/proceedings/data/ articles/000421.pdf

Smith, S. D., & Kazarian, L. E. (1994). The effects of acceleration on the mechanical impedance response of a primate model exposed to sinusoidal vibration. Annals of Biomedical Engineering, 22, 78–87. https://doi.org/10.1007/BF02368224

Strivens, T. A. (1999). The rheology of paints. In Paint and Surface Coatings (2nd ed., pp. 575–597). Elsevier. https://doi.org/10.1533/9781855737006.575

Suggs, C. W., & Abrams, C. F. (1971). Mechanical impedance techniques for evaluating the dynamic characteristics of biological materials. Journal of Agricultural Engineering Research, 16(3), 307–315. https://doi.org/10.1016/S0021-8634(71)80022-7

Tlaisi, A. A., Swamidas, A. S., Akinturk, A., & Haddara, M. R. (2012). Crack detection in shafts using mechanical impedance measurements. Mechanical Engineering Research, 2(2), 10–30. https://doi.org/10.5539/mer.v2n2p10

van Velsor, J. K., Premkumar, L., Chehab, G., & Rose, J. L. (2011). Measuring the complex modulus of asphalt concrete using ultrasonic testing. Journal of Engineering Science and Technology Review, 4(2), 160–168. https://doi.org/10.25103/jestr.042.08

Vázquez, V. F., & Paje, S. E. (2015). Dynamic stiffness assessment of bituminous mixtures type SMA according construction characteristics. The 22nd International Congress on Sound and Vibration (ICSV22). Florence, Italy. 12–16 July 2015.

DOI: 10.7250/bjrbe.2023-18.595


  • There are currently no refbacks.

Copyright (c) 2023 Filippo G. Pratico, Gianfranco Pellicano, Matteo Bolognese, Gaetano Licitra

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.