Experimental and Analytical Studies of String Steel Structure for Bridges

Edmundas Beivydas, Algirdas Juozapaitis, Ilze Paeglite

Abstract


Due to their efficiency, suspension structures are widely used in both roof slabs and different kinds of bridges, from which stress ribbon pedestrian bridges can be distinguished. The main disadvantage of the latter is high deformability, especially under asymmetrical loads. Recently, string structures or their systems have been introduced into bridge building. Numerical and experimental analysis of string behaviour under symmetrical and asymmetrical loads is carried out in the article. Analytical expressions for the calculation of string displacements and tensile forces are presented. The impact of the string pre-stress on the state of its stresses and deformations was evaluated. The assessment of the accuracy of analytical expressions by applying the results of numerical and experimental research is presented. A methodology is proposed for calculating the pre-stressing force taking into account the operational requirements. Three main loading options at different string pre-stress values are analysed. It is worth mentioning that the difference (error) between the analytical and numerical results is not extensive, it does not exceed 3%. It is necessary to notice that in all cases, the analytically obtained results are somewhat higher than FEM (numerically) obtained results.


Keywords:

behaviour analysis; experimental study; numerical analysis; pre-stressed structure; string structure

Full Text:

PDF

References


Baus, U., & Schlaich, M. (2008). Footbridges. Construction, Design, History. Birkhäuser, Basel. https://doi.org/10.1007/978-3-7643-8222-3

Beivydas, E. (2019). A simplified calculation method for symmetrical loading of a single-span composite string steel structure. Engineering Structures and Technologies, 11(2), 70–73. https://doi.org/10.3846/est.2019.11323

Beivydas, E. (2022a). Parametrical analysis for symmetrical loading of a single-span composite string steel structure. The Eurasia Proceedings of Science, Technology, Engineering & Mathematics, 17, 90–101. https://doi.org/10.55549/epstem.1176065

Beivydas, E. (2022b). Analysis for symmetrical and asymmetrical loading of a single-span combined string steel structure. Engineering Structures and Technologies, 14(1), 1–6. https://doi.org/10.3846/est.2022.18403

Beivydas, E. (2020). Suspension string future structure. ABSE Symposium, Wroclaw 2020: Synergy of Culture and Civil Engineering – History and Challenges, Report (pp. 733–740). https://doi.org/10.2749/wroclaw.2020.0733

Bleicher, A., Schlaich, M., Fujino, Y., & Schauer, T. (2011). Model-based design and experimental validation of active vibration control for a stress ribbon bridge using pneumatic muscle actuators. Engineering Structures, 33, 2237–2247. https://doi.org/10.1016/j.engstruct.2011.02.035

Caetano, E., & Cunha, A. (2004). Experimental and numerical assessment of the dynamic behaviour of a stress-ribbon footbridge. Journal of Structural Concrete, 5(1), 29–38. https://doi.org/10.1680/stco.2004.5.1.29

Gimsing, N. J., & Georgakis, Ch. T. (2012). Cable supported bridges: Concept and design (3rd ed.). John Wiley & Sons. https://doi.org/10.1002/9781119978237

Han, K.-J., Lim, N.-H., Ko, M.-G., & Kim, K.-D. (2016). Efficient assumption of design variables for stress ribbon footbridges. KSCE Journal of Civil Engineering, 20(1), 250–260. https://doi.org/10.1007/s12205-015-0186-6

Hu, W.-H., Caetano, E., & Cunha, A. (2013). Structural health monitoring of a stress-ribbon footbridge. Engineering Structures, 57, 578–593. https://doi.org/10.1016/j.engstruct.2012.06.051

Idelberger, K. (2011). The world of footbridges. Ernst and Sohn GmbH. https://doi.org/10.1002/9783433600849

Ito, M. (2005). Cable-supported bridges. In W.F. Chen, & E.M. Lui (Eds.), Handbook of Structural Engineering. CRC Press.

Juozapaitis, A., & Norkus, A. (2007). Determination of rational parameters for the advanced structure of a pedestrian suspension steel bridge. Baltic Journal of Road and Bridge Engineering, 2(4), 173–181. https://bjrbe-journals.rtu.lv/article/view/1822-427X.2007.4.173%E2%80%93181

Juozapaitis, A., Vainiunas, P., & Kaklauskas, G. (2006). A new steel structural system of a suspension pedestrian bridge. Journal of Constructional Steel Research, 62(12), 1257–1263. https://doi.org/10.1016/j.jcsr.2006.04.023

Juozapaitis, A., Sandovič, G., Jakubovskis, R., & Gribniak, V. (2021). Effects of flexural stiffness on deformation behaviour of steel and FRP stress-ribbon bridges. Applied Sciences, 11(6), Article 2585. https://doi.org/10.3390/app11062585

Kulbach, V. (2007). Cable structures. Design and static analysis. Estonian Academy Publishers.

Li, F., Guo, Z., Cui, Y., & Wu, P. (2023). Dynamic load test and contact force analysis of the AERORail structure. Applied Sciences, 13(3), Article 2011. https://doi.org/10.3390/app13032011

Li, F., & Wu, P. (2015). Dynamic behaviors of pretensioned cable AERORail structure. Journal of Central South University, 22, 2267–2276. https://doi.org/10.1007/s11771-015-2751-z

Li, F., Wu, P., & Liu, D. (2012). Experimental study on the cable rigidness and static behaviors of AERORail structure. Steel and Composite Structures, 12(5), 427–444. https://doi.org/10.12989/scs.2012.12.5.427

Markocki, B., Makar, S., & Rogowski, R. (2013). Wybrane problemy w realizacji konstrukcji wstęgowej z betonu sprężonego na podstawie kładki pieszo-jezdnej w miejscowości Lubień. Konstrukcje – Elementy – Materiały. Przegląd Budowlany, 1, 40–45. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BTB6-0007-0099

Parke, G., & Hewson, N. (2022). ICE Manual of Bridge Engineering (3rd ed.). ICE publishing.

Radnić, J., Matešan, D., & Buklijaš-Kobojević, D. (2015). Numerical model for analysis of stress-ribbon bridges. Građevinar, 67(10), 959–973. https://doi.org/10.14256/JCE.1383.2015

Romera, L., Hernández, S., Baldomir, A., & Nieto, F. (2020). Study of pedestrian comfort in a three span stress ribbon footbridge with carbon fibre cables. WIT Transactions on The Built Environment, 196(14), 139–152. https://doi.org/10.2495/HPSM200151

Sandovič, G., & Juozapaitis, A. (2012). The analysis of the behaviour of an innovative pedestrian steel bridge. Procedia Engineering Steel Structures and Bridges 2012, 23rd Czech and Slovak International Conference, 40. Elsevier Science Ltd. https://doi.org/10.1016/j.proeng.2012.07.117

Schlaich, M., Bogle, A., & Bleicher, A. (2011). Entwerfen und Konstruieren Massivbau. Institut für Bauingenieurwesen Technische universitat Berlin.

Strasky, J. (2011). Stress ribbon and cable-supported pedestrian bridges (2nd ed.). ICE Publishing. https://doi.org/10.1680/srcspb.41462

Susmitha, B., Vimala Priya, T., Veera Butchi Babu, J., Venkata Akhil, R., & Rajesh, V. (2019). Stress ribbon bridge analysis and design. Journal of Emerging Technologies and Innovative Research, 6(3), 638–644. https://ww.jetir.org/papers/JETIR1903584.pdf

Unitsky, A. (2006). String transport in questions and answers. STU Ltd. https://unitsky.engineer/assets/files/shares/2006/2006_26.pdf

Zhang, Yi., Pu, W., Zhang, Q., Liu, K., & Dong, H. (2022). Effect of ground motion orientation on seismic responses of an asymmetric stress ribbon pedestrian bridge. Advances in Civil Engineering, 2022, Article e1278314. https://doi.org/10.1155/2022/1278314




DOI: 10.7250/bjrbe.2023-18.622

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Edmundas Beivydas, Algirdas Juozapaitis, Ilze Paeglite

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.