Limit State and Probabilistic Formats in the Analysis of Bracing Piers of Annular Cross-Sections
DOI:
https://doi.org/10.3846/1822-427X.2008.3.167-173Keywords:
bridge piers, tubular structures, road traffic loads, eccentric loading, limit state design, probability-based designAbstract
The expediency and efficiency of concrete bridge piers of annular cross-sections reinforced by steel bars uniformly distributed throughout their perimeter are considered. Modelling of permanent and live load effects and bearing capacity of bracing tubular piers is presented. The features of unsophisticated probability-based design formats are analysed. A simplified but fairly exact analysis of eccentrically loaded piers by limit state and probabilistic approaches is provided. The design practice of bracing tubular piers using limit state and probabilistic approaches is illustrated by a numerical example.
References
Bhattacharya, B. 2008. The extremal index and the maximum of a dependent stationary pulse load process observed above a high threshold, Structural Safety 30: 34–48.
Czarnecki, A. A.; Nowak, A. S. 2008. Time variant reliability profiles for girder bridges, Structural Safety 30: 49–64.
Diniz, S. M. C. 2005. Effect of concrete age specification on the reliability of HSC columns [CD-ROM], in Proc of the 9th International Conference on Structural Safety and Reliability of Engineering Systems and Structures (ICOSSAR 2005). Ed. by Augusti, G.; Schuëller, M.; Ciampoli, M. June 19–23, 2005, Rome, Italy. Rotterdam: Millpress, 565–572. ISBN 9059660404.
Eamon, Ch. D.; Nowak, A. S. 2004. Effect of secondary element on bridge structural system reliability considering moment capacity, Structural Safety 26: 29–47.
Ellingwood, b. R. 1981. Wind and snow load statistics for probability design, Journal of the Structural Division, ASCE 107(7): 1345–1349.
Holicky, M.; Markova, J. 2007. Reliability differentiation and production quality in codes, in Risk, Reliability and Social Safety-Aven & Vinnem (eds), London, 1763–1768.
Joint Committee on Structural Safety (JCSS) [on-line]. 2000. Probabilistic model code: Part 1 – Basis of design, JCCCOSTL/ DIA/VROU-10-11-2000 12th draft [cited 04-Sept-2006]. Available from Internet: http://www.jcss.ethz.ch/publications/PMC/DesBasis2a.pdf
Kudzys, A; Kliukas, R.; Kudzys, A. 2007. On desing features of propped and unpropped hyperstatic structures, Journal of Civil Engineering and Management 13(2): 123–129.
Kudzys, A.; Kliukas, R. 2008. The resistances of compressed spun concrete members reinforced by high-strength steel bars, Materials and Structures 41: 419–430.
Melchers, R. E. 1999. Structural reliability analysis and prediction. 2nd edition. Chichester: John Wiley & Sons, 437 p. ISSN 9780471987710
Nowak, A. S.; Szerszen, M. M. 2003. Calibration of design code for buildings (ACI 318): Part 1 – Statistical models for resistance, ACI Structural Journal 100(3): 377–382.
Szerszen, M. M.; Nowak, A. S. 2003. Calibration of design code for buildings (ACI 318). Part 2 – Reliability analysis and resistance factors, ACI Structural Journal 100(3): 383–391.
Szerszen, M. M.; Szwed, A.; Nowak, A. S. 2005. Reliability analysis for eccentrically loaded columns, ACI Structural Journal 102(5): 676–688.
Вадлуга, Р. 1979. О практическом расчете по прочности бетонов и железобетонных элементов кольцевого сечения [Vadluga, R. Practical method of strength analysis of concrete and reinforced concrete members of annular cross-section], Железобетонные конструкции [Concrete Structures] 9: 49–58.
Вадлуга, Р. 1985. Оценка прочности железобетонных элементов кольцевого сечения [Vadluga, R. The evaluation of strength of reinforced concrete members of ring cross-section], Железобетонные конструкции [Concrete Structures] 14: 97–102.
Downloads
Published
Issue
Section
License
Copyright (c) 2008 Vilnius Gediminas Technical University (VGTU) Press Technika
This work is licensed under a Creative Commons Attribution 4.0 International License.