Properties of Cellulose Fibres and Waste Plastic Modified Porous Friction Course Mixes

Authors

  • Subbarao Nagabhushanarao Suresha Dept of Civil Engineering, Dayananda Sagar College of Engineering, S. M. Hills, K. S. Layout, Bangalore – 560 078, India
  • George Varghese Dept of Civil Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India
  • Ayyalasomayajula Udya Ravi Shankar Dept of Civil Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India

DOI:

https://doi.org/10.3846/bjrbe.2010.22

Keywords:

porous friction course (PFC), modifiers, waste plastics (WP), cellulose fibres (CF), volumetric properties, permeability, aging, abrasion loss, moisture susceptibility

Abstract

This paper summarises the laboratory investigation on porous friction course mixes that were modified with cellulose fibres and waste plastics. Porous friction course mixes of three diff erent aggregate gradations were tested for predetermined binder content. The influence of each modifier on the volumetric properties, permeability, aged abrasion loss, and moisture susceptibility of porous friction course mixes were evaluated. In order to determine the significance level of effect of modifiers on the above properties, the tests for analysis of variance (ANOVA) and Tukey’s multiple mean comparisons were performed. Results of statistical analyses indicate that the gradations are major source of variations in all response properties. However, modifiers too appreciably contributed in reducing the moisture-induced damages. The findings suggest that shredded waste plastics are potentially useful as modifiers to porous friction course mixes.

References

Al-Hadidy, A. I.; Yi-qiu, T. 2009. Effect of Polyethylene on Life of Flexible Pavements, Construction and Building Materials 23(3): 1456–1464. doi:10.1016/j.conbuildmat.2008.07.004

Cooley, Jr., L. A.; Brown, E. R.; Watson, D. E. 2000. Evaluation of Open-Graded Friction Course Mixtures Containing Cellulose Fibres, Transportation Research Record 1723: 19–25. doi:10.3141/1723-03

Decoene, Y. 1990. Contribution of Cellulose Fibres to the Performance of Porous Asphalts, Transportation Research Record 1265: 82–86.

Fuentes-Audén, C.; Sandoval, J. A.; Jerez, A.; Navarro, F. J.; Martínez-Boza, F. J.; Partal, P.; Gallegos, C. 2008. Evaluation of Thermal and Mechanical Properties of Recycled Polyethylene Modified Bitumen, Polymer Testing 27(8): 1005–1012. doi:10.1016/j.polymertesting.2008.09.006

Hassan, H. F; Al-Oraimi, S.; Taha, R. 2005. Evaluation of Open-Graded Friction Course Mixtures Containing Cellulose Fibres and Styrene Butadiene Rubber Polymer, Journal of Materials in Civil Engineering 17(4): 416–422. doi:10.1061/(ASCE)0899-1561(2005)17:4(416)

Hinislioglu, S.; Agar, E. 2004. Use of Waste High Density Polyethylene as Bitumen Modifier in Asphalt Concrete Mix, Materials Letters 58(3–4): 267–271. doi:10.1016/S0167-577X(03)00458-0

Ho, S.; Church, R.; Klassen, K.; Law, B.; MacLeod, D.; Zanzotto, L. 2006. Study of Recycled Polyethylene Materials as Asphalt Modifiers, Canadian Journal of Civil Engineering 33(8): 968–981. doi:10.1139/L06-044

Kim, J.; Lee, H. J.; Kim, Y. R.; Kim, H. B. 2009. A Drainage System for Mitigating Moisture Damage to Bridge Deck Pavements, The Baltic Journal of Road and Bridge Engineering 4(4): 168–176. doi:10.3846/1822-427X.2009.4.168-176

Mallick, R. B.; Kandhal, P. S.; Cooley, Jr. L. A.; Watson, D. E. 2000. Design, Construction, and Performance of New- Generation Open-Graded Friction Courses, Journal of Association of Asphalt Paving Technologist 69: 391–423.

Mutha, N. H.; Patel, M.; Premnath, V. 2006. Plastic Materials Flow Analysis for India, Resources, Conservation and Recycling 47(3): 222–244. doi:10.1016/j.resconrec.2005.09.003

Panda, M.; Mazumdar, M. 2002. Utilization of Reclaimed Polyethylene in Bituminous Paving Mixes, Journal of Materials in Civil Engineering 14(6): 527–530. doi:10.1061/(ASCE)0899-1561(2002)14:6(527)

Praticò, F. G.; Moro, A.; Ammendola, R. 2009. Factors Affecting Variance and Bias of Non-Nuclear Density Gauges for Porous European Mixes and Dense-Graded Friction Courses, The Baltic Journal of Road and Bridge Engineering 4(3): 99–107. doi:10.3846/1822-427X.2009.4.99-107

Punith, V. S.; Veeraragavan, A. 2007. Behavior of Asphalt Concrete Mixtures with Reclaimed Polyethylene as Additive,

Journal of Maters in Civil Engineering 19(6): 500–507. doi:10.1061/(ASCE)0899-1561(2007)19:6(500)

Siddique, R.; Khatib, J.; Kaur, I. 2008. Use of Recycled Plastic in Concrete: a Review, Waste Management 28(10): 1835–1852. doi:10.1016/j.wasman.2007.09.011

Suresha, S. N.; Shankar, A. U. R.; Varghese, G. 2007. Investigation of Porous Friction Courses and Mixes: A Brief Overview, Indian Highways 35(7): 21–43.

Suresha, S. N.; Varghese, G.; Ravi Shankar, A. U. 2009. A Comparative Study on Properties of Porous Friction Course Mixes with Neat Bitumen and Modified Binders, Construction and Building Materials 23(3): 1211–1217. doi:10.1016/j.conbuildmat.2008.08.008

Suresha, S. N.; Varghese, G.; Ravi Shankar, A. U. 2010. Effect of Aggregate Gradations on Properties of Porous Friction Course Mixes, Materials and Structures 43(6): 789–801. doi:10.1617/s11527-009-9548-1

Tayfur, S.; Ozen, H.; Aksoy, A. 2007. Investigation of Rutting Performance of Asphalt Mixtures Containing Polymer Modifiers, Construction and Building Materials 21(2): 328–337. doi:10.1016/j.conbuildmat.2005.08.014

Wu, S.; Ye, Q.; Li, N. 2008. Investigation of Rheological and Fatigue Properties of Asphalt Mixtures Containing Polyester Fibers, Construction and Building Materials 22(10): 2111–2115. doi:10.1016/j.conbuildmat.2007.07.018

Wu, S. P.; Liu, G.; Mo, L. T. 2006. Effect of Fiber Types on Relevant Properties of Porous Asphalt, Transactions of Nonferrous Metals Society of China 16(2): 791–795. doi:10.1016/S1003-6326(06)60302-6

Downloads

Published

27.09.2010

How to Cite

Suresha, S. N., Varghese, G., & Shankar, A. U. R. (2010). Properties of Cellulose Fibres and Waste Plastic Modified Porous Friction Course Mixes. The Baltic Journal of Road and Bridge Engineering, 5(3), 156-163. https://doi.org/10.3846/bjrbe.2010.22