Semi–Empirical Model of the Simulation of Traffic Pollution Dispersion Near Roadways

Authors

  • Bronislovas Martinėnas Dept of Physics, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania
  • Valdas Špakauskas Dept of Physics, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania
  • Dainius Jasaitis Dept of Physics, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania

DOI:

https://doi.org/10.3846/bjrbe.2011.03

Keywords:

modelling, traffic pollution, aerosol particles, roadside

Abstract

A semi-empirical statistical model based on physical processes intended for simulation of traffic pollution dispersion near roadways is applied. The pollution source is a road and transport, which in this model is simulated as an undeviating cut-off cylinder, formed along the roadway and filled with aerosol particles. The dispersion of the cloud of these aerosol particles into the environment by the crosswind directed perpendicularly to the road is investigated, including the gravitation, particle buoyancy and diffusion of atmosphere effects. The main attention is focused on the concentration change of the particles size range of 0.05–0.22 μm when receded further from the road in the direction of the wind. Parameters of the model are adjusted to the data of the experiment above the ground surface in horizontal locality. Good agreement between the model and experimental results is obtained.

References

Carsignol, J.; Calovi, L. 2005. Roadside Soil and Plant Pollution. Metal Trace Elements. Setra Information Note [cited 12 December 2010] Available from Internet: http://www.setra.equipement.gouv.fr/IMG/pdf/US_NI_EEC_073_GB.pdf.

Chock, D. P. 1978. A Simple Line-Source Model for Dispersion near Roadways, Atmospheric Environment 12(4): 823–829. doi:10.1016/0004-6981(78)90019-7

Grigaliūnaitė‒Vonsevičienė, G.; Martinėnas, B.; Szydlo, A. 2008. Traffic Exhaust Spreading into the Roadside. Statistical Model, in Proc. of the 7th International Conference “Environmental Engineering”: selected papers, vol. 3. Ed. by Čygas, D.; Froehner, K. D. May 22‒23, 2008, Vilnius, Lithuania. Vilnius: Technika, 1154‒1159.

Imhol, D.; Weingartner, E.; Vogt, U.; Dreiseidler, A.; Rosenbohm, E.; Scheer, V.; Vogt, R.; Nielsen, O. J.; Kurtenbach, R.; Corsmeier, U.; Kohler, M.; Baltensperger, U. 2005. Vertical Distribution of Aerosol Particles and NOx Close to a Motorway, Atmospheric Environment 39(31): 5710–5721. doi:10.1016/j.atmosenv.2004.07.036

Jacobson, M. Z.; Seinfeld, J. H. 2004. Evolution of Nanoparticle Size and Mixing State near the Point of Emission, Atmospheric Environment 38(13): 1839‒1850. doi:10.1016/j.atmosenv.2004.01.014

Juknevičius, S.; Matyžiūtė-Juodkienė, D.; Sabienė, N. 2007. Contamination of Soil and Grass by Heavy Metals along the Main Roads in Lithuania, Ekologija [Ecology] 53(3): 70–74.

Karim, M. M.; Matsui, H. 1998. A Mathematical Model of Wind Flow, Vehicle Wake, and Pollutant Concentration in Urban Road Microenvironments. Part 1: Model Description, Transportation Research Part D: Transport and Environment 3(2): 81‒92. doi:10.1016/S1361-9209(97)00028-X

Laurinavičius, A.; Čygas, D.; Čiuprinskas, K.; Juknevičiūtė, L. 2007. Data Analysis and Evaluation of Road Weather Information System Integrated in Lithuania, The Baltic Journal of Road and Bridge Engineering 2(1): 5‒11.

Linden, P. 2010. Plume dynamics. Mechanical and Environmental Engineering Laboratory [cited 22 December 2010]. Available from Internet: http://maecourses.ucsd.edu/labcourse/lecturenotes/Plume_lecture_2010.pdf

Martinėnas, B.; Špakauskas, V. 2010. Simulation of Traffic Pollution Dispersion near Roadways, Lithuanian Journal of Physics 50(2): 255–260. doi:10.3952/lithjphys.50212

Martuzevicius, D.; Grinshpun, S. A.; Reponen, T.; Gorny, R. L.; Shukla, R.; Lockey, J.; Hu, S.; McDonald, R.; Biswas, P.; Kliucininkas, L.; LeMasters, G. 2004. Spatial and Temporal Variations of PM2.5 Concentration and Composition throughout an Urban Area with High Freeway Density – The Greater Cincinnati Study, Atmospheric Environment 38(8): 1091–1105. doi:10.1016/j.atmosenv.2003.11.015

Rao, K. S.; Gunter, R. L.; White, J. R.; Hosker, R. P. 2002. Turbulence and Dispersion Modeling near Highways, Atmospheric Environment 36(27): 4337‒4346. doi:10.1016/S1352-2310(02)00353-9

Seinfeld, J. H.; Pandis, S. N. 1998. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. New York: John Wiley & Sons.

Vaiškūnaitė, R.; Laurinavičius, A.; Miškinis, D. 2009. Analysis and Evaluation of the Effect of Studded Tyres on Road Pavement and Environment (II), The Baltic Journal of Road and Bridge Engineering 4(4): 203‒211. doi:10.3846/1822-427X.2009.4.203-211

Zhu, Y.; Hinds, W. C. 2005. Predicting Particle Number Concentrations Near a Highway Based on Vertical Concentration Profile, Atmospheric Environment 39(8): 1557–1566. doi:10.1016/j.atmosenv.2004.11.015

Zhu, Y.; Hinds, W. C.; Kim, S.; Sioutas, C. 2002. Concentration and Size Distribution of Ultrafine Particles Near a Major Highway, Journal of the Air & Waste Management Association 52(9): 1032–1042.

Downloads

Published

27.03.2011

How to Cite

Martinėnas, B., Špakauskas, V., & Jasaitis, D. (2011). Semi–Empirical Model of the Simulation of Traffic Pollution Dispersion Near Roadways. The Baltic Journal of Road and Bridge Engineering, 6(1), 17-22. https://doi.org/10.3846/bjrbe.2011.03