Possibilities for the Use of Chemicals Materials Alternative to Chlorides for Decreasing Road Slipperiness in Winter


  • Alfredas Laurinavičius Dept of Roads, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania
  • Romas Mažeika Agrochemical Laboratory of the Lithuanian Research Centre for Agriculture and Forestry, Savanorių pr. 287, 50127 Kaunas, Lithuania
  • Rasa Vaiškūnaitė Dept of Environmental Protection, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania
  • Gintautas Brimas Vilnius University, Clinic of Gastroenterology, Nephrology and Surgery, Santariškių g. 2, 08661 Vilnius, Lithuania
  • Šarūnas Milašius AB „Achema“, Jonalaukis village, Rukla sub-district, 55550 Jonava district, Lithuania




winter road maintenance, decrease of slipperiness, calcium nitrate


Having assessed in various aspects the study materials (salts), used for road maintenance in a cold period of the year, and taking a special consideration of the impact of these materials (salts) on the environment as well as their price, it could be stated that the most acceptable alternative for Lithuania is the already used sodium and calcium chloride salts. A large disadvantage of two materials (sodium chloride and calcium chloride) is that chloride ions strongly increase the speed of corrosion reactions of metals. Larger concentrations of chlorides aggravate vegetation processes and, thus, cause damage to roadside plants. Having assessed all the materials (salts) according to their chemical and physical properties and also according to their price and availability from technological point of view in the production, at present the following compounds could be distinguished: carbamide and calcium magnesium nitrates. When using calcium nitrate fewer chlorides get into the environment and the environment is less corrosive in regard to metals, however, here another problem occurs. If too large concentrations get into the environment, nitrates can cause pollution of ground water and soil. In future, having expanded the production of calcium and magnesium nitrates, it will be possible to start producing certain mixtures, e.g. carbamide with those nitrates or the mixture of carbamide, calcium, magnesium nitrates and calcium chloride, and, thus, to reduce a direct use of chlorides.


Baltrėnas, P.; Kazlauskienė. A. 2009. Sustainable Ecological Development Reducing Negative Effects of Road Maintenance Salts, Technological and Economic Development of Economy 15(1): 178–188. doi:10.3846/1392-8619.2009.15.178-188

Baltrėnas, P.; Kazlauskienė, A.; Zaveckytė, J. 2006. Experimental Investigation into Toxic Impact of Road Maintenance Salt on Grass Vegetation, Journal of Environmental Engineering and Landscape Management 14(2): 83–88.

Chinathamby, K.; Reina, R. D.; Bailey, P. C. E.; Lees, B. K. 2006. Effects of Salinity on the Survival, Growth and Development of Tadpoles of the Brown Tree Frog, Litoria ewingii. Australian Journal of Zoology 54(2): 97–105. doi:10.1071/ZO06006

Chollar, B. H.; Smith, D. L.; Zenewitz, J. A. 1991. The Involvement of the Federal Highway Administration with Calcium Magnesium Acetate, in Calcium Magnesium Acetate: An Emerging Bulk Chemical for Environmental Applications. Press: Elvsevier, 1–20.

Forman, R. T. T.; Sperling, D.; Bissonette, J. A.; Clevenger, A. P.; Cutshall, C. D.; Dale, V. H.; Fahrig, L.; France, R.; Goldman, C. R.; Heanue, K. J.; Jones, A.; Swanson, F. J.; Turrentine, T.; Winter, T. C. 2003. Road Ecology Science and Solutions. Island Press, Washington, D. C. 481 p.

Godwin, K. S.; Hafner, S. D.; Buff, M. F. 2003. Long-Term Trends in Sodium and Chloride in the Mohawk River, New York: the Effect of Fifty Years of Road-Salt Application, Environmental Pollution 124(2): 273–281. doi:10.1016/S0269-7491(02)00481-5

Hill, P.; McCreary, P. 2008. General Chemistry. 4th edition. Press: Pearson/Prentice Hali, Upper Saddle River, New Jersey, USA.

Holleman, A. F.; Wiberg, E. 2001. Inorganic Chemistry. Academic Press: San Diego.

Howard, K. W. F.; Maier, H. 2007. Road De-Icing Salt as a Potential Constraint on Urban Growth in the Greater Toronto Area, Canada, Journal of Contaminant Hydrology 91(1–2): 146–170. doi:10.1016/j.jconhyd.2006.10.005

Kamaitis, Z. 2008. Field Investigation of Joints in Precast Post-Tensioned Segmental Concrete Bridges, The Baltic Journal of Road and Bridge Engineering 3(4): 198–205. doi:10.3846/1822-427X.2008.3.198-205

Karraker, N. E.; Gibbs, J. P.; Vonesh, J. R. 2008. Impacts of Road Deicing Salt on the Demography of Vernal Pool-Breeding Amphibians, Ecological Applications 18: 724–734. doi:10.1890/07-1644.1

Koryak, M.; Stafford, L. J.; Reilly, R. J.; Magnuson, P. M. 2001. Highway Deicing Salt Runoff Events and Major Ion Concentrations Along a Small Urban Stream, Journal of Freshwater Ecology 16(1): 125–134. doi:10.1080/02705060.2001.9663795

Kunkel, R.; Kreins, P.; Tetzlaff, B.; Wendland, F. 2010. Forecasting the Effects of EU Policy Measures on the Nitrate Pollution of Groundwater and Surface Waters, Journal of Environmental Sciences China 22(6): 872–877. doi:10.1016/S1001-0742(09)60191-1

Laurinavičius, A.; Miškinis, D.; Vaiškūnaitė, R.; Laurinavičius, A. 2010. Analysis and Evaluation of the Effect of Studded Tyres on Road Pavement and Environment (III), The Baltic Journal of Road and Bridge Engineering 5(3): 169–176. doi:10.3846/bjrbe.2010.24

Leonovich, I. I.; Bogdanovich, S. V.; Shilinskii, V. I. 2007. Prognozirovanije zimnej skolzkosti avtomobilnykh dorog, Vestnik BNTU 1: 50–55 [Леонович, И. И.; Богданович, С. В.; Шилинский, В. И. Прогнозирование зимней скользкости автомобильных дорог, Вестник БНТУ].

Löfgren, S. 2001. The Chemical Effects of Deicing Salt on Soil and Stream Water of Five Catchments in Southeast Sweden, Water, Air, and Soil Pollution 130(1–4): 863–868. doi:10.1023/A:1013895215558

Marsalek, J. 2003. Road Salts in Urban Stormwater: an Emerging Issue in Stormwater Management in Cold Climates, Water Science and Technology 48(9): 61–70.

Patnaik, P. 2002. Handbook of Inorganic Chemicals. McGraw-Hill. 1100 p. ISBN 978-0-07-049439-8.

Petkuvienė, J.; Paliulis, D. 2009. Experimental Research of Road Maintenance Salts and Molasses („Safecote“) Corrosive Impact on Metals, Journal of Environmental Engineering and Landscape Management 17(4): 236–243. doi:10.3846/1648-6897.2009.17.236-243

Ramakrishna, D. M.; Viraraghavan, T. 2005. Environmental Impact of Chemical Deicers – a Review, Water, Air, and Soil Pollution 166(1–4): 49–63. doi:10.1007/s11270-005-8265-9

Sanzo, D.; Hecnar, S. J. 2006. Effects of Road De-Icing Salt (NaCl) on Larval Wood Frogs (Rana sylvatica), Environmental Pollution 140: 247–256. doi:10.1016/j.envpol.2005.07.01

Sivilevičius, H. 2011. Modelling the Interaction of Transport System Elements, Transport 26(1): 20–34. doi:10.3846/16484142.2011.560366




How to Cite

Laurinavičius, A., Mažeika, R., Vaiškūnaitė, R., Brimas, G., & Milašius, Šarūnas. (2011). Possibilities for the Use of Chemicals Materials Alternative to Chlorides for Decreasing Road Slipperiness in Winter. The Baltic Journal of Road and Bridge Engineering, 6(4), 274-282. https://doi.org/10.3846/bjrbe.2011.35