The Analysis of Reinforced Concrete Box Girder Viaduct Defects and Their Estimation
DOI:
https://doi.org/10.3846/bjrbe.2012.02Keywords:
cracking, wire bunch corrosion, finite element method (FEM), modelling, stresses, defects, deflection, creep, bridgeAbstract
The article describes the main damages of box girder viaducts constructed in Lithuania and discusses the reasons for their occurrence. Several viaducts are examined in more detail with regard to their design data and experimental results. Using finite element software “Midas Civil” the distribution of the main stresses was determined in the box and reduced girders of the Pareizgupis viaduct caused by symmetrical and asymmetrical loads. The widths of flexural cracks in the Pareizgupis viaduct are analyzed evaluating the behaviour of prestressed reinforcement suffered from corrosion. The above mentioned program was used to calculate the deflection of viaduct when damage of reinforcement is estimated. The paper examines the possibility to evaluate viaduct durability using the probability methods based on the initial investigation data.
References
Bažant, Z. P.; Baweja, S. 1995. Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures: Model B3, Materials and Structures 28(6): 357–367. http://dx.doi.org/10.1007/BF02473152
Darmawan, S. 2009. Pitting Corrosion Model for Partial Prestressed Concrete (PC) Structures in a Chloride Environment, The Journal for Technology and Science 20(3): 109–118.
Darmawan, S.; Stewart, G. 2007. Effect of Pitting Corrosion on Capacity of Prestressing Wires, Magazine of Concrete Research 59(2): 131–139. http://dx.doi.org/10.1680/macr.2007.59.2.131
Gribniak, V.; Kaklauskas, G.; Bačinskas, D. 2007. State-of-Art Review on Shrinkage Effect on Cracking and Deformations of Concrete Bridge Elements, The Baltic Journal of Road and Bridge Engineering 2(4): 183–193.
Gribniak, V.; Kaklauskas, G.; Čygas, D.; Bačinskas, D.; Kupliauskas, R.; Sokolov, A. 2010. Investigation of Concrete Cracking Effect in Deck Slab of Continuous Bridges, The Baltic Journal of Road and Bridge Engineering 5(2): 83–88. http://dx.doi.org/10.3846/bjrbe.2010.12
Hewson, N. R. 2003. Prestressed Concrete Bridges: Design and Construction. Canada: Thomas Telford, 540 p. ISBN 0727732234. http://dx.doi.org/10.1680/pcbdac.32231
Jokūbaitis, V.; Kamaitis, Z. 2005. Gelžbetoninių konstrukcijų pleišėjimas ir remontas [Cracking and Repair of Reinforced Concrete Construction]. Vilnius: Technika, 155 p. ISBN 9986-05-406-0.
Jokūbaitis, V.; Kamaitis, Z. 2002. Įstrižųjų plyšių modeliavimas vertinant gelžbetoninių konstrukcijų skersinės armatūros įtempius [Diagonal Cracks Modeling Evaluate Reinforced Concrete Construction Crossarm Reinforcement Stresses], The Journal of Civil Engineering and Management 8(1): 24–29.
Jokūbaitis, V.; Juknevičius, L. 2009. Gelžbetoninių konstrukcijų normalinių plyšių pločio skaičiavimo metodų analizė [Analysis of Methods for Calculating the Width of Normal Cracks in Reinforced Concrete Structures], Engineering Structures and Technologies 1(1): 23–29.
Kaklauskas, G.; Girdžius, R.; Bačinskas, D.; Sokolov, A. 2008. Numerical Deformation Analysis of Bridge Concrete Girders, The Baltic Journal of Road and Bridge Engineering 3(2): 51–56. http://dx.doi.org/10.3846/1822-427X.2008.3.51-56
Kamaitis, Z. 2008. Field Investigation of Joints in Precast Post-Tensioned Segmental Concrete Bridges, The Baltic Journal of Road and Bridge Engineering 3(4): 198–205. http://dx.doi.org/10.3846/1822-427X.2008.3.198-205
Kamaitis, Z. 1996. The Causes of Shear Cracking in Prestressed Concrete Box-Girder Bridges, Statyba [Civil Engineering] 4(8): 26–34.
Kamaitis, Z. 2000. Gelžbetoninių tiltų remontas [Repair of Reinforced Concrete Bridges]. Vilnius: Technika, 168 p.
Kamaitis, Z. 1995. Gelžbetoninių tiltų būklė ir jos vertinimas [Condition State and Assessment of Reinforced Concrete Bridges]. Vilnius: Technika, 182 p. ISBN 9986-05-234-3.
Kudzys, A.; Jokūbaitis, V.; Jurkša, A.; Kamaitis, Z.; Kivilša, J.; Kudzys, A.; Marčiukaitis, G.; Pukelis, P.; Vadlūga, R.; Vainiūnas, P. 1992. Gelžbetoninės ir mūrinės konstrukcijos [Reinforced Concrete and Masonry Structures]. Vilnius: Mokslas, 292 p. ISBN 5420000000.
Liang, M.-T.; Wu, J. 2001. Predicting the Integrity of Existing Prestressed Concrete Bridge Deck using Sonic Method, The Journal of Marine Science and Technology 9(1): 45–52.
Moon, D.-Y.; Sim, J.; Oh, H. 2005. Practical Crack Control during the Construction of Precast Segmental Box Girder Bridges, Computers and Structures 83(31–32): 2584–2593. http://dx.doi.org/10.1016/j.compstruc.2005.05.001
Muttoni, A.; Ruiz, M. F. 2007. Concrete Cracking in Tension Members and Application to Deck Slabs of Bridges, Journal of Bridge Engineering 12(5): 646–653. http://dx.doi.org/10.1061/(ASCE)1084-0702(2007)12:5(646)
Plos, M.; Gylltoft, K. 2006. Evaluation of Shear Capacity of a Prestressed Concrete Box Girder Bridge using Non-Linear FEM, Structural Engineering International 16(3): 213–221. http://dx.doi.org/10.2749/101686606778026457
Polodny, W. 1985. The Cause of Cracking in Post-Tensioned Concrete Box Girder Bridges and Retrofit Procedures, PCI Journal 30(2): 82–139.
Rombach, G.; Specker, A. 2000. Finite Element Analysis of Externally Prestressed Segmental Bridges. Available from Internet: http://www.docstoc.com/docs/71337394/Finite-Element-Analysis-of-Segmental-Bridges
Wang, M. 2005. Long Term Health Monitoring of Post-Tensioned Box Girder Bridges. Available from Internet: http://www.pwri.go.jp/eng/ujnr/tc/g/pdf/22/22-5-4m-wang.pdf
Downloads
Published
Issue
Section
License
Copyright (c) 2012 Vilnius Gediminas Technical University (VGTU) Press Technika
This work is licensed under a Creative Commons Attribution 4.0 International License.