Evaluation of Real-Time Intelligent Sensors for Structural Health Monitoring of Bridges Based on Swara-Waspas; a Case in Iran
DOI:
https://doi.org/10.3846/bjrbe.2014.40Keywords:
real-time intelligent sensors, structural health monitoring, damage assessment, SWARA, WASPASAbstract
Now a day, earthquake engineers follow subjects such as structural health monitoring, warning announcement and prediction rather safe-making in the field of structure. In this regard, these three choices are of great goals of Iran in direction of many studies concentrated on. This research is centralized on real time health monitoring system of Iran bridges. In this regard, to evaluate smart real time health monitoring sensors, first all different types were determined using the library resources, and then all the important indices in evaluating these sensors were derived by interviewing experts in construction management fields. After that, to continue the survey, questionnaires were given to 18 experts to weight the effective indices. Through a decision-making method using new hybrid methodology based on SWARA and WASPAS, existential necessity degree of all indices and sensors were obtained and eventually the following result captured: applying piezoelectric sensors is optimal in smart health monitoring to be used in Iran bridges and optical fiber sensor was recognized as the second optimum option.
References
Bae, S.-C.; Woo, S.; Shin, D. H. 2013. Prediction of WSN Placement for Bridge Health Monitoring Based on Material Characteristics, Automation in Construction 35: 18–27. http://dx.doi.org/10.1016/j.autcon.2013.02.002
Bitarafan, M.; Lale Arefi, S.; Hashemkhani Zolfani, S.; Mahmoudzadeh, A. 2013. Selecting the Best Design Scenario of the Smart Structure of Bridges for Probably Future Earthquakes, Procedia Engineering 57: 193–199. http://dx.doi.org/10.1016/j.proeng.2013.04.027
Bitarafan, M.; Hashemkhani Zolfani, S.; Arefi, S. L.; Zavadskas, E. K. 2012. Evaluating the Construction Methods of Cold-Formed Steel Structures in Reconstructing the Areas Damaged in Natural Crises, Using The Methods AHP and COPRAS-G, Archives of Civil and Mechanical Engineering 12(3): 360–367. http://dx.doi.org/10.1016/j.acme.2012.06.015
Bronnimann, R.; Nellen, Ph. M.; Sennhauser, U. 1999. Reliability Monitoring of CFRP Structural Elements in Bridges with Fiber Optic Bragg Grating Sensors, Journal of Intelligent Material Systems and Structures 10(4): 322–329. http://dx.doi.org/10.1177/1045389X9901000408
Chang, F. K. 1997. Structural Health Monitoring: a Summary Report on the First International Workshop on Structural Healthmonitoring, in Proc. of the 2rd International Workshop on Structural Health Monitoring. Technomic Publishing Company, 3–11.
De Vries, M.; Nasta, M.; Bhatia, V. 1995. Performance of Embedded Short-Gage-Length Optical Fiber Sensors in a Fatigueloaded Reinforced Concrete Specimen, Smart Materials and Structures 4(1A): 107–113. http://dx.doi.org/10.1088/0964-1726/4/1A/013
Dėjus, T.; Antuchevičienė, J. 2013. Assessment of Health and Safety Solutions at a Construction Site, Journal of Civil Engineering and Management 19(5): 728–737. http://dx.doi.org/10.3846/13923730.2013.812578
Dibley, M. J.; Li, H.; Rezgui, Y.; Miles, J. J. 2012. An Ontology Framework for Intelligent Sensor-Based Building Monitoring, Automation in Construction 28: 1–14. http://dx.doi.org/10.1016/j.autcon.2012.05.018
Farshad, M. 1995. Intelligent Materials and Structures, Scientia Iranica 2(1): 65–87.
Fuhr, P. L.; Huston, D. R.; Nelson, M. 2000. Fiber Optic Sensing of a Bridge inWaterbury, Vermont, Journal of Intelligent Material Systems and Structures 10(4): 293–303. http://dx.doi.org/10.1177/1045389X9901000405
Hashemkhani Zolfani, S.; Bahrami, M. 2014. Investment Prioritizing in High Tech Industries Based on SWARA-COPRAS Approach, Technological and Economic Development of Economy 20(3): 881435. http://dx.doi.org/10.3846/20294913.2014.881435
Hashemkhani Zolfani, S.; Zavadskas, E. K.; Turskis, Z. 2013a. Design of Products with Both International and Local Perspectives Based on Yin-Yang Balance Theory and SWARA Method, Economska Istraživanja – Economic Research 26(2): 153–166.
Hashemkhani Zolfani, S.; Esfahani, M. H.; Bitarafan, M.; Zavadskas, E. K.; Lale Arefi, S. H. 2013b. Developing a New Hybrid MCDM Method for Selection of the Optimal Alternative of Mechanical Longitudinal Ventilation of Tunnel Pollutants during Automobile Accidents, Transport 28(1): 89–96. http://dx.doi.org/10.3846/16484142.2013.782567
Hashemkhani Zolfani, S.; Farrokhzad, M.; Turskis, Z. 2013c. Investigating on Successful Factors of Online Games Based on Explorer, E & M: Ekonomie a Management 16(2): 161–169.
Hashemkhani Zolfani, S.; Šaparauskas, J. 2013. New Application of SWARA Method in Prioritizing Sustainability Assessment Indicators of Energy System, Inzinerine Ekonomika – Engineering Economics 24(5): 408–414.
Inaudi, D.; Rufenacht, A.; Von Arx, B.; Noher, H. P.; Vurpillot, S.; Glisic, B. 2002. Monitoring of a Concrete Arch Bridge during Construction, in Proc. of SPIE 4696, Smart Structures and Materials: Smart Systems for Bridges, Structures, and Highways. March 17, 2002, San Diego, California, USA. 146–153.
Keršulienė, V.; Turskis, Z. 2011. Integrated Fuzzy Multiple Criteria Decision Making Model for Architect Selection, Technological and Economic Development of Economy 17(4): 645–666. http://dx.doi.org/10.3846/20294913.2011.635718
Keršulienė, V.; Zavadskas, E. K.; Turskis, Z. 2010. Selection of Rational Dispute Resolution Method by Applying New Stepwise Weight Assessment Ratio Analysis (Swara), Journal of Business Economics and Management 11(2): 243–258. http://dx.doi.org/10.3846/jbem.2010.12
Krautkramer, K.; Krautkramer, H. 1990. Ultrasonic Testing of Materials. 4th edition, New York: Springer-Verlag. ISBN 978-3-662-02359-4. http://dx.doi.org/10.1007/978-3-662-10680-8
Kwun, H.; Bartels, K. A. 1998. Magnetostrictive Sensor Technology and Its Applications, Ultrasonics 36(1‒5): 171–178. http://dx.doi.org/10.1016/S0041-624X(97)00043-7
Measures, R. M.; Alavie, A. T.; Maaskant, R.; Ohn, M.; Karr, S.; Huang, S. 1995. A Structurally Integrated Bragg Grating Laser Sensing System for a Carbon Fiber Prestressed Concrete Highway Bridge, Smart Materials and Structures 4(1): 20–30. http://dx.doi.org/10.1088/0964-1726/4/1/004
Mehrani, E.; Ayoub, A.; Ayoub, A. 2009. Evaluation of Fiber Optic Sensors for Remote Health Monitoring of Bridge Structures, Materials and Structures 42(2): 183–199. http://dx.doi.org/10.1617/s11527-008-9377-7
Ou, J.; Zhou, Z. 2008. Applications of Optical Fiber Sensors of SHM in Infrastructures, Smart Sensor Phenomena 6933: 23–33.
Park, S. H.; Ahmad, S.; Yun, C. B.; Roh, Y. 2006a. Multiple Crack Detection of Concrete Structures Using Impedance-Based Structural Health Monitoring, Experimental Mechanics 46(5): 609–618. http://dx.doi.org/10.1007/s11340-006-8734-0
Park, S. H.; Yun, C. B.; Roh, Y.; Lee, J. J. 2006b. PZT-Based Active Damage Detection Techniques for Steel Bridge Components, Smart Materials and Structures 15(4): 957–966. http://dx.doi.org/10.1088/0964-1726/15/4/009
Prieto, J. L.; Sanchez, P.; Aroca, C.; López, E.; Sánchez, M. C.; de Abril, O.; Pérez, L. 2000. Improving the Characteristics in Magnetostrictive–Piezoelectric Sensors When the Viscous Interface is Removed, Sensors and Actuators A-Physical 84(3): 338–341. http://dx.doi.org/10.1016/S0924-4247(00)00405-2
Ruzgys, A.; Volvačiovas, R.; Ignatavičius, Č.; Turskis, Z. 2014. Integrated Evaluation of External Wall Insulation in Residential Buildings Using SWARA-TODIM MCDM Method, Journal of Civil Engineering and Management 20(1): 103–110. http://dx.doi.org/10.3846/13923730.2013.843585
Quirion, M.; Ballivy, G. 2000. Laboratory Investigation on Fabry-Perot Sensor and Conventional Extensometers for Strain Measurement in High Performance Concrete, Canadian Journal of Civil Engineering 27(5): 1088–1093. http://dx.doi.org/10.1139/l00-025
Šiožinytė, E.; Antuchevičienė, J. 2013. Solving the Problems of Daylighting and Tradition Continuity in a Reconstructed Vernacular Building, Journal of Civil Engineering and Management 19(6): 873–882. http://dx.doi.org/10.3846/13923730.2013.851113
Soh, C. K.; Tseng, K. K.-H.; Bhalla, S.; Gupta, A. 2000. Performance of Smart Piezoceramic Patches in Health Monitoring of a RC Bridge, Smart Materials and Structures 9(4): 533–542. http://dx.doi.org/10.1088/0964-1726/9/4/317
Sun, M.; Staszewski, W. J.; Swamy, R. N. 2010. Smart Sensing Technologies for Structural Health Monitoring of Civil Engineering Structures, Advances in Civil Engineering, Article ID 724962. http://dx.doi.org/10.1155/2010/724962
Vafaeipour, M.; Zolfani, S. H.; Varzandeh, M. H. M.; Derakhti, A.; Eshkalag, M. K. 2014. Assessment of Regions Priority for Implementation of Solar Projects in Iran: New Application of a Hybrid Multi-Criteria Decision Making Approach, Energy Conversion and Management 86: 653–663. http://dx.doi.org/10.1016/j.enconman.2014.05.083
Yun, C. B.; Lee, J. J.; Koo, K. Y. 2011. Smart Structure Technologies for Civil Infrastructures in Korea: Recent Research and Applications, Structure and Infrastructure Engineering 7(9): 673–688. http://dx.doi.org/10.1080/15732470902720109
Zavadskas, E. K.; Antuchevičienė, J.; Šaparauskas, J.; Turskis. Z. 2013. MCDM Methods WASPAS and MULTIMOORA: Verification of Robustness of Methods When Assessing Alternative Solutions, Journal of Economic Computation and Economic Cybernetics Studies and Research 47(2): 5–20.
Zavadskas, E. K.; Turskis, Z.; Antuchevičienė, J.; Zakarevičius, A. 2012. Optimization of Weighted Aggregated Sum Product Assessment, Electronics and Electrical Engineering 6(122): 3–6. http://dx.doi.org/10.5755/j01.eee.122.6.1810
Zhang, B.; Benmokrane, B.; Nicole, J.-F.; Masmoudi, R. 2002. Evaluation of Fibre Optic Sensors for Structural Condition Monitoring, Materials and Structures 35(250): 357–364. http://dx.doi.org/10.1007/BF02483155
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Vilnius Gediminas Technical University (VGTU) Press Technika
This work is licensed under a Creative Commons Attribution 4.0 International License.