Mechanical State Analysis of Different Variants of Piled Rafts
DOI:
https://doi.org/10.3846/bjrbe.2015.01Keywords:
piled raft, soil-raft interaction, variants, finite element analysis, designAbstract
Traditional raft design methods describe unpiled and fully piled rafts. The current paper aims to discuss in-termediate raft design variants when the raft is at the same time partially supported by piles and partially rests on the ground. The loading conditions of all variants as well as mechanical properties assumed to be identical, general numerical simulation assumptions are also the same. The task is to analyse the stress and strain state of the raft for all variants (unpiled raft, partially piled raft, fully piled raft), to compare the results and to determine the most rational case. Raft settlements, bending moments and expenses of the materials are compared on the basis of the results.References
Avaei, A.; Ghotbi, A. R.; Aryafar, M. 2008. Investigation of Pile – oil Interaction Subjected to Lateral Loads in Layered Soils, American Journal of Engineering and Applied Science 1(1): 76–81. http://dx.doi.org/10.3844/ajeassp.2008.76.81
Bezvolev, S. G. 2008. General Procedure for Analysis of the Stress–Strain State of a Soil Mass with Strengthening or Weakening Elements, Soil Mechanics and Foundation Engineering 45(3): 77–86. http://dx.doi.org/10.1007/s11204-008-9007-y
Bezvolev, S. G. 2002. Method of Accounting for the Deformability of an Inhomogeneous Elastoplastic Bed in Analyzing Foundations Slabs, Soil Mechanics and Foundation Engineering 39(5): 162–170. http://dx.doi.org/10.1023/A:1021665429148
Chapman, D.; Metje, N.; Stärk, A. 2010. Introduction to Tunnel Construction. New York: Spon Press. 390 p. ISBN 9780415468411.
Huat, B. K. 2012. Review of Available Approaches for Ulti-mate Bearing Capacity of Two–Layered Soils, Journal of Civil Engineering and Management 18(4): 469–482. http://dx.doi.org/10.3846/13923730.2012.699930
Dalili Shoaei, M.; Alkarni, A.; Noorzaei, J.; Jaafar, M. S.; Huat, B. K. 2012. Review of Available Approaches for Ulti-mate Bearing Capacity of Two–Layered Soils, Journal of Civil Engineering and Management 18(4): 469–482. http://dx.doi.org/10.3846/13923730.2012.699930
Dirgėlienė, N.; Norkus, A.; Amšiejus, J.; Skuodis, Š.; Žilionienė, D. 2013. Stress–Strain Analysis of Sand Subjected to Triaxial Loading, The Baltic Journal of Road and Bridge Engineering 8(1): 25–31. http://dx.doi.org/10.3846/bjrbe.2013.04
Fedorovskii, V. G. 2008. On Some “Generalizations” of Analytical Engineering Methods, Soil Mechanics and Foundation Engineering 45(3): 87–97. http://dx.doi.org/10.1007/s11204-008-9008-x
Fedorovskii, V. G.; Bezvolev, S. G. 2000. Prediction of Shallow–Foundation Settlements and Selection of Bed Models for Slab Analysis, Soil Mechanics and Foundation Engineering 37(4): 114–123. http://dx.doi.org/10.1007/BF02885345
Gabrielaitis, L.; Papinigis, V. 2010. Design of Deep Foundations on Bored Piles, in Proc. of the 10th International Conference “Modern Building Materials, Structures and Techniques”: select-ed papers, vol. 2. Ed. by Vainiūnas, P.; Zavadskas, E. K., 19–21 May 2010, Vilnius, Lithuania. Vilnius: Technika, 1104–1110.
Kameswara Rao, N. S. V. 2011. Foundation Design. Theory and Practice. Singapore: John Wiley & Sons. 544 p.
Mandolini, A.; Di Laora, R.; Mascarucci, Y. 2013. Rational Design of Piled Raft, in Proc. of the 11th International Conference “Modern Building Materials, Structures and Techniques”: selected papers. Ed. by Juozapaitis, A.; Vainiūnas, P.; Zavadskas, E. K., 16–17 May 2013, Vilnius, Lithuania. Elsevier: Procedia Engineering 57: 45–52.
Mandolini, A.; Russo, G.; Viggiani, C. 2005. Pile Foundations: Experimental Investigation, Analysis and Design, Report at XVI ICSMFE, Osaka, Japan, 1: 177–213.
Mistríková, Z.; Jendželovský, N. 2012. Static Analysis of the Cylindrical Tank Resting on Various Types of Subsoil, Journal of Civil Engineering and Management 18(5): 744–751. http://dx.doi.org/10.3846/13923730.2012.723346
Mockus, J.; Belevičius, R.; Šešok, D.; Kaunas, J.; Mačiūnas, D. 2012. On Bayesian Approach to Grillage Optimization, Information Technology and Control 41(4): 332–339. http://dx.doi.org/10.5755/j01.itc.41.4.1670
Perelmuter, A.; Slivker, V. 2003. Numerical Structural Analysis. Methods, Models and Pitfalls. Springer. 500 p. ISBN 9783540006282. http://dx.doi.org/10.1007/978-3-540-36500-6
Sivilevičius, H.; Daniūnas, A.; Zavadskas, A. K.; Turskis, Z.; Sušinskas, S. 2012. Experimental Study on Technological Indicators of Pile–Columns at a Construction Site, Journal of Civil Engineering and Management 18(4): 512–518. http://dx.doi.org/10.3846/13923730.2012.709958
Skaržauskas, V.; Jankovski, V.; Atkočiūnas, J. 2009. Optimisation des structures métalliques élastoplastiques sous conditions de rigidité et de plasticité données [Optimization of Elastic–Plastic Steel Structures under Conditions of Rigidity and Plasticity], European Journal of Environmental and Civil Engi-neering 13(10): 1203–1219 (in French). http://dx.doi.org/10.1080/19648189.2009.9693186
Sokolov, V. A.; Strahov, D. A.; Sinjakov, L. N. 2013. Raschjot sooruzhenij bashennogo tipa na dinamicheskie vozdejstvija s uchjotom podatlivosti svajnogo fundamenta i osnovanija [Design of Tower Type Structures to Dynamic Effects Taking into Account Flexibility of the Pile Foundation and the Base], Magazine of Civil Engineering 39(4): 46–50. http://dx.doi.org/10.5862/MCE.39.5
Tomlinson, M.; Woodward, J. 2008. Pile Design and Construction Practice. Taylor and Francis. 551 p. ISBN 0203964292.
Wang, Y. H.; Tham, L. G.; Cheung, Y. K. 2005. Beams and Plates on Elastic Foundations: a Review, Progress in Structural Engineering and Materials 7(4): 174–182. http://dx.doi.org/10.1002/pse.202
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Vilnius Gediminas Technical University (VGTU) Press Technika
This work is licensed under a Creative Commons Attribution 4.0 International License.