Protection of Bridges Against Stray Current Corrosion

Authors

  • Krzysztof Zakowski Dept of Electrochemistry, Corrosion and Materials Engineering, Gdansk University of Technology, Narutowicza str. 11/12, 80-233 Gdansk, Poland
  • Michal Narozny Dept of Electrochemistry, Corrosion and Materials Engineering, Gdansk University of Technology, Narutowicza str. 11/12, 80-233 Gdansk, Poland
  • Kazimierz Darowicki Dept of Electrochemistry, Corrosion and Materials Engineering, Gdansk University of Technology, Narutowicza str. 11/12, 80-233 Gdansk, Poland

DOI:

https://doi.org/10.3846/bjrbe.2015.02

Keywords:

steel bridge, reinforced concrete, corrosion, stray current, cathodic protection

Abstract

A case study of Siennicki Bridge stray current corrosion hazard is presented. A corrosion risk was caused by incorrectly designed tram line traction which goes over the bridge. No dielectric insulation between running rails and bridge steel construction was used. A variety of protection methods against stray currents are described. Characteristics of the endangered bridge were described. Impressed current cathodic protection system against stray currents was proposed and designed at the Department of Electrochemistry, Corrosion and Materials Engineering, Gdansk University of Technology. Coupon technique measurements and potential measurements were performed to verify the effectiveness of the protection system.

References

Akiyama, M.; Frangopol, D. M.; Suzuki, M. 2012. Integration of the Effects of Airborne Chlorides into Reliability-Based Du- rability Design of Reinforced Concrete Structures in a Marine Environment, Structure and Infrastructure Engineering 8(2): 125–134. http://dx.doi.org/10.1080/15732470903363313

Augonis, M.; Zadlauskas, S.; Rudzionis, Z.; Pakalnis, A. 2012. The Analysis of Reinforced Concrete Box Girder Viaduct Defects and Their Estimation, The Baltic Journal of Road and Bridge Engineering 7(1): 13–21. http://dx.doi.org/10.3846/bjrbe.2012.02

Bertolini, L.; Bolzoni, F.; Pastore, T.; Pedeferria, P. 2004. Effectiveness of a Conductive Cementitious Mortar Anode for Cathodic Protection of Steel in Concrete, Cement and Concrete Research 34(4): 681–694. http://dx.doi.org/10.1016/j.cemconres.2003.10.018

Bertolini, L.; Bolzoni, F.; Pedeferri, P.; Lazzari, L.; Pastore, T. 1998. Cathodic Protection and Cathodic Prevention in Concrete: Principles and Applications, Journal of Applied Electrochemistry 28(12): 1321–1331. http://dx.doi.org/10.1023/A:1003404428827

Brown, M. C.; Sharp, S. R. 2008. Survey of Cathodic Protection Systems on Virginia Bridges, Transportation Research Record 2044: 61–67. http://dx.doi.org/10.3141/2044-07

Coca, O. F. J.; Tello, M. U. L; Gaona-Tiburcio, C.; Romero, J. A.; Martínez-Villafañe, A.; Maldonado, E.; Almeraya-Calderón, F. 2011. Corrosion Fatigue of Road Bridges: a Review, International Journal of Electrochemical Science 6(8): 3438–3451.

Damgaard, N.; Walbridge, S.; Hansson, C.; Yeung, J. 2010. Corrosion Protection and Assessment of Weathering Steel Highway Structures, Journal of Constructional Steel Research 66(10): 1174–1185. http://dx.doi.org/10.1016/j.jcsr.2010.04.012

Darowicki, K.; Zakowski, K. 2004. A New Time-Frequency Detection Method of Stray Current Field Interference on Metal Structures, Corrosion Science 46(5): 1061–1070. http://dx.doi.org/10.1016/j.corsci.2003.09.007

Ellingwood, B. R. 2005. Risk-Informed Condition Assessment of Civil Infrastructure: State of Practice and Research Issues, Structure and Infrastructure Engineering 1(1): 7–18. http://dx.doi.org/10.1080/15732470412331289341

Fuhr, P. L.; Huston, D. R. 1998. Corrosion Detection in Reinforced Concrete Roadways and Bridges via Embedded Fiber Optic Sensors, Smart Materials and Structures 7(2): 217–228. http://dx.doi.org/10.1088/0964-1726/7/2/009

Gan, F.; Sun, Z. W.; Sabde, G.; Chin, D. T. 1994. Cathodic Protection to Mitigate External Corrosion of Underground Steel Pipe Beneath Disbanded Coating, Corrosion 50(10): 804–816. http://dx.doi.org/10.5006/1.3293470

Glass, G. K.; Hassanein, A. M.; Buenfeld, N. R. 1997. Monitoring the Passivation of Steel in Concrete Induced by Cathodic Protection, Corrosion Science 39(8): 1451–1458. http://dx.doi.org/10.1016/S0010-938X(97)00051-6

Hosokawa, Y.; Kajiyama, F.; Nakamura, Y. 2004. New Cathodic Protection Criteria Based on Direct and Alternating Current Densities Measured Using Coupons and Their Application to Modern Steel Pipelines, Corrosion 60(3): 304–312. http://dx.doi.org/10.5006/1.3287735

Khan, N. A. 2004. Using Coupons and ER Soil Corrosion Probes in Applying Pipeline CP Criteria, Materials Performance 46(4): 26–30.

Kossakowski, P. G. 2013. Fatigue Strength of an over One Hundred Year Old Railway Bridge, The Baltic Journal of Road and Bridge Engineering 8(3): 166–173. http://dx.doi.org/10.3846/bjrbe.2013.21

Machczynski, W. 2002. Simulation Model for Drainage Protection of Earth-Return Circuits Laid in Stray Currents Area, Electrical Engineering 84(3): 165–172. http://dx.doi.org/10.1007/s00202-002-0119-5

Nygaard, P. V.; Geiker, M. R. 2012. Measuring the Corrosion Rate of Steel in Concrete – Effect of Measurement Technique, Polarisation Time and Current, Materials and Corrosion 63(3): 200–214. http://dx.doi.org/10.1002/maco.201005792

Radosevic, J.; Kliskic, M.; Gudic, S.; Smoljko, I.; Vrsalovic, L. 2007. Some New Studies of Sacrificial Anodes, Corrosion Reviews 25(1–2): 1–11. http://dx.doi.org/10.1515/CORRREV.2007.25.1-2.1

Szabo, S.; Bakos, I. 2006a. Cathodic Protection with Sacrificial Anodes, Corrosion Reviews 24(3–4): 231–280.

Szabo, S.; Bakos, I. 2006b. Impressed Current Cathodic Protection, Corrosion Reviews 24(1–2): 39–62.

Tzeng, Y. S.; Lee, C. H. 2010. Analysis of Rail Potential and Stray Currents in a Direct-Current Transit System, IEEE Transactions on Power Delivery 25(3): 1516–1525. http://dx.doi.org/10.1109/TPWRD.2010.2040631

Yamashita, M.; Nagano, H.; Oriani, R. A. 1998. Dependence of Corrosion Potential and Corrosion Rate of a Low-Alloy Steel upon Depth of Aqueous Solution, Corrosion Science 40(9): 1447– 1453. http://dx.doi.org/10.1016/S0010-938X(98)00041-9

Zakowski, K. 2009. The Determination and Identification of Stray Current Source Influences on Buried Pipelines Using Time/Frequency Analysis, Anti-Corrosion Methods and Materials 56(6): 330–333. http://dx.doi.org/10.1108/00035590911000313

Zakowski, K.; Darowicki, K. 2003. Potential Changes in an Electric Field and Electrolytic Corrosion, Anti-Corrosion Methods and Materials 50(1): 25–33. http://dx.doi.org/10.1108/00035590310456261

Zakowski, K.; Darowicki, K. 2000. Methods of Evaluation of the Corrosion Hazard Caused by Stray Currents to Metal Structures Containing Aggressive Media, Polish Journal of Environmental Studies 9(4): 237–241.

Zakowski, K.; Sokolski, W. 1999. 24-hour Characteristic of Interaction on Pipelines of Stray Currents Leaking from Tram Tractions, Corrosion Science 41(11): 2099–2111. http://dx.doi.org/10.1016/S0010-938X(99)00034-7

Downloads

Published

27.03.2015

How to Cite

Zakowski, K., Narozny, M., & Darowicki, K. (2015). Protection of Bridges Against Stray Current Corrosion. The Baltic Journal of Road and Bridge Engineering, 10(1), 11-16. https://doi.org/10.3846/bjrbe.2015.02