UAV Photogrammetry for Road Surface Modelling

Authors

  • Birutė Ruzgienė Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania
  • Česlovas Aksamitauskas Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania
  • Ignas Daugėla UAB InfoEra, S. Žukausko g. 17, 08234 Vilnius, Lithuania
  • Šarūnas Prokopimas UAB InfoEra, S. Žukausko g. 17, 08234 Vilnius, Lithuania
  • Virgaudas Puodžiukas Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania
  • Donatas Rekus Kaunas University of Technology, K. Donelaičio g. 73, 94424 Kaunas, Lithuania

DOI:

https://doi.org/10.3846/bjrbe.2015.19

Keywords:

Unmanned Aerial Vehicle, photogrammetry, image processing, orthophoto, accuracy, road observation

Abstract

Recently, the interest of Unmanned Aerial Vehicle application in photogrammetric environment for roads observation and monitoring has increased in many countries, in Lithuania as well. The experimental object for demonstration of capability and efficiency of aerial vehicle-based remote sensing technology for road data collection was a western bypass of Vilnius. The platform of the model UX5 Trimble with mounted camera Sony NEX-5R was applied for gaining images. The implemented means are mobile and not expensive. Photogrammetric technique with software package Business Center Photogrammetry Module was applied for the modelling of images. The correctness of digital surface model generally depends on camera resolution, flight height and accuracy of ground control points. The coordinates of control points were determined using Global Positioning System Trimble R4. Paper demonstrates results of a new technology application possibilities for linear object (road) mapping and accuracy evaluation of spatial models. The road points positioning accuracy investigation was carried out in consideration with geodetic control measurements. The average root mean square error for the points coordinates is 2.94 cm, and standard deviations – 2.78 cm. Analyzing coincidence or mismatches of Vilnius western bypass project data with photogrammetric product, not significant discrepancies of road section features were determined. The cost consideration of Unmanned Aerial Vehicle in conjunction with photogrammetry employment at experimental object is presented.

References

Choi, K.; Lee, I. 2013. A Sequential Aerial Triangulation Algorithm for Real-Time Georeferencing of Image Sequences Acquired by an Airborne Multi-Sensor System, Remote Sensing 5(1): 57–82. http://dx.doi.org/10.3390/rs5010057

Eisenbeiss, H. 2009. UAV Photogrammetry: Dissertation, Federal Institute of Technology (ETH), Institute of Geodesy and Photogrammetry, Zurich. 235 p. Available from Internet: http:// www.igp-data.ethz.ch/berichte/blaue_berichte_pdf/105.pdf

Haala, N.; Cramer, M.; Weimer, F.; Trittler, M. 2011. Performance Test on UAV-Based Photogrammetric Data Collection, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 38-1/C22: 7–12. http://dx.doi.org/10.5194/isprsarchives-XXXVIII-1-C22-7-2011

Haala, N.; Hastedt, H.; Wolf, K.; Ressl, C.; Baltrusch, S. 2010. Digital Photogrammetric Camera Evaluation ‒ Generation of Digital Elevation Models, Photogrammetrie‒Fernerkundung‒Geoinformation (2): 99–115. http://dx.doi.org/10.1127/1432-8364/2010/0043

Harvin, S.; Lucieer, A. 2012. Accessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery, Remote Sensing 4(6): 1573–1599. http://dx.doi.org/10.3390/rs4061573

Konecny, G. 2003. Geoinformation: Remote Sensing, Photogrammetry and Geographic Information System. Taylor and Francis. 248 p. http://dx.doi.org/10.4324/9780203469644

Kraus, K. 2007. Photogrammetry: Geometry from Images and Laser Scans. Berlin: Walter de Gruyter. 459 p. http://dx.doi.org/10.1515/9783110892871

Luhmann, T.; Robson, S.; Kyle, S.; Harley, I. 2006. Close Range Photogrametry. Principles, Methods and Applications. Scotland, Dunbeath: Whittles Publishing. 510 p.

Mill, T.; Ellmann, A.; Aavik, A.; Horemuz, M.; Sillamäe, S. 2014. Determining Ranges and Spatial Distribution of Road Frost Heave by Terrestrial Laser Scanning, The Baltic Journal of Road and Bridge Engineering 9(3): 225–234. http://dx.doi.org/10.3846/bjrbe.2014.28

Mill, T.; Ellmann, A.; Uuekula, K.; Joala, V. 2011. Road Surface Surveying Using Terrestrial Laser Scanner and Total Station Technologies, in Proc. of 8th International Conference “Environmental Engineering”: selected papers, vol. 3. Ed. by Čygas, D.; Froehner, K. D., 19–20 May, 2011, Vilnius, Lithuania. Vilnius: Technika, 1142–1147.

McGlone, J. C. 2004. Manual of Photogrammetry. American Society for Photogrammetry and Remote Sensing, Maryland, USA. 1151 p.

Neitzel, F.; Klonowski, J. 2011. Mobile Mapping with Low-Cost UAV System, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 38-1/C22: 1–6. Available from Internet: http://www.geometh.ethz.ch/ uav_g/proceedings/neitzel

Nurminen, K.; Karjalainen, M.; Yu, X.; Hyyppä, J.; Honkavaara, E. 2013. Performance of Dense Digital Surface Models Based on Image Matching in the Estimation of Plot-Level Forest Variables, ISPRS Journal of Photogrammetry and Remote Sensing 83: 104–115. http://dx.doi.org/10.1016/j.isprsjprs.2013.06.00

Rock, G.; Ries, J. B.; Udelhoven, T. 2011. Sensitivity Analysis of UAV-Photogrammetry for Creating Digital Elevation Models (DEM), International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 38-1/C22: 1–5. Available from Internet: http://www.geometh.ethz.ch/uav_g/ proceedings/rock

Rudinskas, D. 2011. Bepiločių orlaivių skrydžio parametrų matavimų duomenų perdavimo saugos metodikos sukūrimas: Daktaro disertacija. Vilniaus Gedimino technikos universitetetas. Vilnius: Technika. 85 p. (in Lithuanian). Available from Internet: http://dspace.vgtu.lt/bitstream/1/928/3/1975_Rudinskas_Disertacija_WEB.pdf

Ruzgienė, B. 2010. Skaitmeninio reljefo modelio kūrimo metodai ir tikslumo tyrimas, taikant skaitmeninės fotogrametrijos technologiją, Geodezija ir Kartografija 36(2): 57–62 (in Lithuanian). http://dx.doi.org/10.3846/gc.2010.09

Trimble. 2014. UX5. Available from Internet: http://uas.trimble. com/ux5

Verhoeven, G. J. 2009. Providing an Archeological Bird’s-Eye View – an Overall Picture of Ground-Based Means to Execute Low-Altitude Aerial Photography (LAAP) in Archeology, Archeological Prospection 16(4): 233–243. http://dx.doi.org/10.1002/arp.354

Zhang, C. 2010. Monitoring the Condition of Unpaved Roads with Remote Sensing and Other Technology. Final Report for US DOT DTPH56 -06-BAA-0002. Geographic Information Science Center of Excellence, South Dakota State University. 53 p. Available from Internet: http://ntl.bts.gov/ lib/42000/42300/42378/FinalReport.pdf

Downloads

Published

27.06.2015

How to Cite

Ruzgienė, B., Aksamitauskas, Česlovas, Daugėla, I., Prokopimas, Šarūnas, Puodžiukas, V., & Rekus, D. (2015). UAV Photogrammetry for Road Surface Modelling. The Baltic Journal of Road and Bridge Engineering, 10(2), 151-158. https://doi.org/10.3846/bjrbe.2015.19