Advantages of Laser Scanning Systems for Topographical Surveys in Roads Engineering
DOI:
https://doi.org/10.3846/bjrbe.2016.18Keywords:
mobile laser scanning, roads and streets mapping, total station, topographical survey.Abstract
The objective of the work is to assess the advantages of the laser scanning system in the topographical surveys. The analysis and assessment of two methods, the classical total station method and mobile laser scanning are presented in the article. The results of the performed investigations have been compared, the technological characteristics and accuracy of the investigations have been presented, as well as the procedure of the topographic image formation, possibilities and efficiency have been assessed. The real-life topographic survey’s projects on the analysis of roads and streets (components) have been used where the ground surface, the components of the roads and the surrounding objects have been analysed. The analysis provides information on the availability and potential of the investigated methods and the final attained accuracy due to a certain number of the control points. The obtained results indicate that the main differences of the methods revealed when compiling the topographical images for urban or rural areas are the speed of measurements and data processing, level of detail of the results and various possibilities of the method implementation.
References
Kalantaitė, A.; Stankevicius, Z. 2009. Simplification Algorithms of Selection Parameters of LIDAR Ground Surface Points Cloud, Geodezija ir kartorafija 35(2): 44–49. Available from Internet: http://www.tandfonline.com/doi/pdf/10.3846/1392-1541.2009.35.44-49
Kalantaitė, A.; Paršeliūnas, E. K.; Romanovas, D.; Šlikas, D. 2012. Generating the Open Space 3D Model Based on LiDAR Data, Geodezija ir kartorafija 38(4): 152–156. Available from Internet: http://www.tandfonline.com/doi/abs/10.3846/20296991. 2012.758438
Nuikka, M.; Rönnholm, P.; Kaartinen, H. 2008. Comparison of Three Accurate 3D Measurement Methods for Evaluating As- Built Floor Flatness, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 37 (B5): 129–134. Available from Internet: http://www.isprs.org/proceedings/XXXVII/congress/5_pdf/23.pdf
Plati, C.; Georgouli, K. 2014. Field Investigation of Factors Affecting Skid Resistance Variations in Asphalt Pavements, The Baltic Journal of Roads and Bridge Engineering 9(2): 108–114. http://dx.doi.org/10.3846/bjrbe.2014.14
Papšienė, L.; Balčiūnas, A.; Beconytė, G.; Motiejauskas, D.; Romanovas, D.; Aksamitauskas, Č.; Papsys, K. 2014. Feasibility of Integrated Transport Network Model in Lithuania, Transport 4(2): 346–354. http://dx.doi.org/10.3846/16484142.2014.982175
Ruzgienė, B.; Berteška, T.; Gečytė, S.; Jakubauskienė, E.; Aksamitauskas, Č. 2015. The Surface Modelling Based on UAV Photogrammetry and Qualitative Estimation, Measurement 73: 619– 627. http://dx.doi.org/10.1016/j.measurement.2015.04.018
Grussenmeyer, P.; Landes, T.; Voegtle, T.; Ringle, K. 2008. Comparison Methods of Terrestrial Laser Scanning, Photogrammetry and Tacheometry Data for Recording of Cultural Heritage Buildings, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 37 (B5): 213– 218. Available from Internet: http://isprsserv.ifp.uni-stuttgart. de/proceedings/XXXVII/congress/5_pdf/38.pdf
Šlikas, D.; Kalantaitė, A. 2013. Area 3-D Model Generation Applying Data of Dimensional Scanning, Aviacijos technologijos 1(1): 52–56. Available from Internet: http://www.at.vgtu.lt/ index.php/at/article/view/at.2013.12
Žalnierukas, A.; Ruzgienė, B.; Kalantaitė, A.; Valaitienė, R. 2009. Miestų skenavimo LiDAR metodu tikslumo analizė, Geodezija ir kartografija 35(2): 55–60 (in Lithuanian). http://dx.doi.org/10.3846/1392-1541.2009.35.55-60
Downloads
Published
Issue
Section
License
Copyright (c) 2016 Vilnius Gediminas Technical University (VGTU) Press Technika
This work is licensed under a Creative Commons Attribution 4.0 International License.