Influence of Asphalt Visco-Elastic Properties on Flexible Pavement Performance

Authors

  • Rita Kleizienė Road Research Institute, Vilnius Gediminas Technical University, Linkmenų g. 28, 08217 Vilnius, Lithuania
  • Audrius Vaitkus Road Research Institute, Vilnius Gediminas Technical University, Linkmenų g. 28, 08217 Vilnius, Lithuania
  • Donatas Čygas Dept of Roads, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania

DOI:

https://doi.org/10.3846/bjrbe.2016.36

Keywords:

asphalt dynamic modulus, pavement design, pavement performance, predictive model, master curve, mul¬tilayer-elastic theory.

Abstract

Even though every layer of pavement structure is important and affects pavement performance, the asphalt layers visco-elasticity plays significant role. Bitumen properties, as well as asphalt mixture properties, vary depending on temperature and loading conditions. These variations influence entire pavement bearing capacity and has to be evaluated in pavement design. The main challenge is material behaviour description through simple models to incorporate them to pavement design. Generally, pavements are designed using Multilayer Elastic Theory assuming that all materials are elastic, isotropic, and homogenous. This paper presents analysis of two pavement structures response calculated according to three pavement design approaches. The dynamic modulus and phase angle of asphalt mixtures was estimated using Hirsch model after binder complex shear modulus tests. The visco-elastic behaviour was described with rheological Huet-Sayegh model and pavement responses estimation was done using MnLayer and ViscoRoute2 software. The analysis reviled static and dynamic load influence on pavement structure based on elastic and visco-elastic properties of asphalt layers. This allowed optimisation of layer thicknesses and determination of more cost beneficial pavement structure with appropriate performance.

References

Airey, G. D.; Rahimzadeh, B.; Collop, A. C. 2003. Viscoelastic Linearity Limits for Bituminous Materials, Materials and Structures 36(10): 643–647. https://doi.org/10.1007/BF02479495

Al-Khateeb, G.; Shenoy, A.; Gibson, N. 2007. Mechanistic Performance Analyses of the FHWA’s Accelerated Loading Facility Pavements, Journal of Association of Asphalt Paving Technologists 76: 737–770.

Anderson, D. A.; Christensen, D. W.; Bahia, H. U.; Dongre, R.; Sharma, M; Antle, C. E.; Button, J. 1994. Binder Characterization and Evaluation, Volume 3: Physical Characterization. Strategic Highway Research Program, National Research Council, Report No. SHRP-A-369. 491 p.

Andrei, D.; Witczak, M. W.; Mirza, M. W. 1999. Development of Revised Predictive Model for the Dynamic (Complex) Modulus of Asphalt Mixtures, Development of the 2002 Guide for the Design of New and Rehabilitated Pavement Structures, NCHRP.

Chabot, A.; Chupin, O.; Deloffre, L.; Duhamel, D. 2010. ViscoRoute 2.0a: Tool for the Simulation of Moving Load Effects on Asphalt Pavement, Road Materials and Pavement Design 11(2): 227–250. https://doi.org/10.1080/14680629.2010.9690274

Chehab, G. R.; Kim, R. Y.; Schapery, R. A.; Witczak, M. W.; Bonaquist, R. F. 2002. Time-Temperature Superposition Principle for Asphalt Concrete with Growing Damage in Tension State, Journal of the Association of Asphalt Paving Technologists 71: 559–593.

Christensen, D. W.; Bonaquist, R. 2015. Improved Hirsch Model for Estimating the Modulus of Hot-Mix Asphalt, Road Materials and Pavement Design 16(sup2): 254–274. https://doi.org/10.1080/14680629.2015.1077635

Christensen, D. W.; Pellinen, T.; Bonaquist, R. F. 2003. Hirsch Model for Estimating the Modulus of Asphalt Concrete, The Association of Asphalt Paving Technologists 72: 97–121.

Chupin, O.; Piau, J.-M.; Chabot, A. 2012. Evaluation of the Structure-Induced Rolling Resistance (SRR) for Pavements Including Viscoelastic Material Layers, Materials and Structures 46(4): 683–696. https://doi.org/10.1617/s11527-012-9925-z

Čygas, D.; Laurinavičius, A.; Vaitkus, A.; Perveneckas, Z.; Motiejūnas, A. 2008. Research of Asphalt Pavement Structures on Lithuanian Roads (I), The Baltic Journal of Road and Bridge Engineering 3(2): 77–83. https://doi.org/10.3846/1822-427X.2008.3.77-83

Di Benedetto, H.; Olard, F.; Sauzéat, C.; Delaporte, B. 2004. Linear Viscoelastic Behaviour of Bituminous Materials: From Binders to Mixes, Road Materials and Pavement Design 5(sup1): 163–202. https://doi.org/10.1080/14680629.2004.9689992

Di Benedetto, H.; Asayer Soltani, A.; Chaverot, P. 1996. The Fatigue of the Bituminous Mixes: a Pertinent Approach of Its Measurement and Its Characterization, in Eurashpalt & Eurobitume Congress, vol. 2, 7–10 May 1996, Strasbourg, France. 12 p.

Dickinson, E. J. 1974. The Dynamic Shear Modulus of Paving Asphalts as a Function of Frequency, Transactions of The Society of Rheology (1957–1977) 18(4): 591–606. https://doi.org/10.1122/1.549349

Dongre, R.; Myers, L.; D’Angelo, J. 2005. Field Evaluation of Witczak and Hirsch Models for Predicting Dynamic Modulus of Hot-Mix Asphalt (with discussion), Journal of Association of Asphalt Paving Technologists 74: 381–442.

Duhamel, D.; Chabot, A.; Tamagny, P.; Harfouche, L. 2005. Viscoroute: Visco-elastic Modeling for Asphalt Pavements ‒ Viscoroute: Modélisation des chaussées bitumineuses, Cahier Thématique: Méthodes Numériques En Génie Civil. Bulletin Des Laboratoires Des Ponts Et Chaussées: 89–103.

Francken, L.; Verstraeten, J. 1974. Methods for Predicting Moduli and Fatigue Laws of Bituminous Road Mixes Under Repeated Bending, Transportation Research Record 515: 114–123.

Gillespie, T. D.; Karamihas, S. M.; Cebon, D.; Sayers, M. W.; Nasim, M. A.; Hansen, W.; Ehsan, N. 1992. Effects of Heavy Vehicle Characteristics on Pavement Response and Performance. National Cooperative Highway Research Program Report No. 353. 132 p.

Gordon, G. V.; Shaw, M. T. 1994. Computer Programs for Rheologists. Hanser/Gadner Publ.

Hess, R. 1998. Kalibrierung von Verhaltensmodellen für das Straßenerhaltungsmanagement [Calibration of Behavior Models for the Road Maintenance Management]. Univerity of Hannover (in German).

Hogentogler, C. A.; Terzaghi. C. 1929. Interrelationship of Load, Road and Subgrade, Public Roads 10(3): 37–64.

Hopman, P. C.; Kunst, P. A. J.; Pronk, A. C. 1989. A Renewed Interpretation Method for Fatigue Measurement, Verification of Miner’s Rule, in The 4th Eurobitume Symposium, vol. 1. 4–6 October 1989, Madrid, Spain. 557–561.

Huang, Y. H. 2004. Pavement Analysis and Design. 2nd edition. New Jersey: Pearson Prentice Hall. 792 p.

Huet, C. 1999. Coupled Size and Boundary-Condition Effects in Viscoelastic Heterogeneous and Composite Bodies, Mechanics of Materials 31(12): 787–829. https://doi.org/10.1016/S0167-6636(99)00038-1

Huet, C. 1963. Etude par une méthode d’impédance du comportement viscoélastique des matériaux hydrocarbonés. Université de Paris (in Frensh).

Khazanovich, L.; Wang, Q. C. 2008. MnLayer: High-Performance Layered Elastic Analysis Program, Transportation Research Record 2037(1): 63–75. https://doi.org/10.3141/2037-06

Kleizienė, R.; Vaitkus, A.; Čygas, D. 2015. Axial Load Distribution Corresponding to Vehicle Type and Gross Weight, in International Conference on Applied Mechanics and Mechatronics Engineering (AMME 2015), 25‒26 October 2015, Bangkok, Thailand.

Li, Q.; Xiao, D. X.; Wang, K. C. P.; Hall, K. D.; Qiu, Y. 2011. Mechanistic-Empirical Pavement Design Guide (MEPDG): a Bird’s-Eye View, Journal of Modern Transportation 19: 114–133.

Lundstrom, R.; Ekblad, J.; Isacsson, U.; Karlsson, R. 2007. Fatigue Modeling as Related to Flexible Pavement Design: State of the Art, Road Materials and Pavement Design 8(2): 165–205. https://doi.org/10.1080/14680629.2007.9690072

Marasteanu, M.; Anderson, D. 2000. Establishing Linear Viscoelastic Conditions for Asphalt Binders, Transportation Research Record 1728: 1–6. https://doi.org/10.3141/1728-01

Olard, F.; Di Benedetto, H. 2003. General “2S2P1D” Model and Relation Between the Linear Viscoelastic Behaviours of Bituminous Binders and Mixes, Road Materials and Pavement Design 4(2): 185–224. https://doi.org/10.1080/14680629.2003.9689946

Park, S. W. 2004. Load Limits Based on Rutting in Pavement Foundations, KSCE Journal of Civil Engineering 8(1): 23–28. https://doi.org/10.1007/BF02829077

Pellinen, T.; Zofka, A.; Marasteanu, M.; Funk, N. 2007. The Use of Asphalt Mixture Stiffness Predictive Models (with Discussion), Journal of the Association of Asphalt Paving Technologist 76: 575–626.

Pellinen, T. K.; Witczak, M. W.; Bonaquist, R. F. 2003. Asphalt Mix Master Curve Construction using Sigmoidal Fitting Function with Non-Linear Least Squares Optimization, Recent Advances in Materials Characterization and Modeling of Pavement Systems: 83–101. https://doi.org/10.1061/40709(257)6

Priest, A. L.; Timm, D. H. 2005. A Full-Scale Pavement Structural Study for Mechanistic-Empirical Pavement Design (with Discussion), Journal of the Association of Asphalt Paving Technologists 74: 519–556.

Rowe, G.; Baumgardner, G.; Sharrock, M. 2009. Functional Forms for Master Curve Analysis of Bituminous Materials, in Proc. of the 7th International RILEM Symposium on Advanced Testing and Characterization of Bituminous Materials, book 1, vol. 27, 27–29 May, 2009, Rhodes, Greece. 81–91. https://doi.org/10.1201/9780203092989.ch9

Rowe, G. M.; Bouldin, M. G. 2000. Improved Techniques to Evaluate the Fatigue Resistance of Asphaltic Mixtures, in The 2nd Eurasphalt & Eurobitume Congress Barcelona 2000. 20–22 September 2000, Barcelona, Spain. 754–763.

Sakhaeifar, M. S. 2011. Development of New Dynamic Modulus ([E*]) Predictive Models for Hot Asphalt Mixtures: PhD Thesis. North Carolina State University, ProQuest Dissertations Publishing. 301 p.

Sayegh, G. 1965. Contribution à l’étude des propriétés viscoélastiques des bitumes purs et des bétons bitumineux. Faculté des Sciences de Paris (in French).

Speth, O. 1985. Versuchsstrecke Hilpoltstein, Forschungsarbeiten aus dem Straßenwesen. Heft 95 [Roadway Hilpoltstein. Research from the Road Administration. Issue 95], Bonn.

Vaitkus, A.; Čygas, D.; Kleizienė, R. 2014a. Research of Asphalt Pavement Rutting in Vilnius City Streets, in Proc. of the 9th International Conference „Environmental Engineering 2014“, 22–23 May 2014, Vilnius, Lithuania. Vilnius, Lithuania: Vilnius Gediminas Technical University Press “Technika” 2014. https://doi.org/10.3846/enviro.2014.172

Vaitkus, A.; Čygas, D.; Kleizienė, R.; Žiliūtė, L. 2014b. New Solutions for Distressed Pavement Rehabilitation of Vilnius City Streets, in Proc. of the 3rd International Conference on Road and Rail Infrostructure – Cetra 2014: Road and Railway Infrastructure III, 28–30 April, 2014, Split, Croatia. 351–357.

Vaitkus, A.; Laurinavičius, A.; Oginskas, R.; Motiejūnas, A.; Paliukaitė, M.; Barvidienė, O. 2012. The Road of Experimental Pavement Structures: Experience of Five Years Operation, The Baltic Journal of Road and Bridge Engineering 7(3): 220– 227. https://doi.org/10.3846/bjrbe.2012.30

Wistuba, M. P.; Walther, A. 2013. Consideration of Climate Change in the Mechanistic Pavement Design, Road Materials and Pavement Design 14(sup1): 227–241. https://doi.org/10.1080/14680629.2013.774759

Yusoff, N. I. M.; Shaw, M. T.; Airey, G. D. 2011. Modelling the Linear Viscoelastic Rheological Properties of Bituminous Binders, Construction and Building Materials 25(5): 2171–2189. https://doi.org/10.1016/j.conbuildmat.2010.11.086

Downloads

Published

27.12.2016

How to Cite

Kleizienė, R., Vaitkus, A., & Čygas, D. (2016). Influence of Asphalt Visco-Elastic Properties on Flexible Pavement Performance. The Baltic Journal of Road and Bridge Engineering, 11(4), 313–323. https://doi.org/10.3846/bjrbe.2016.36