The impact of ageing on the bitumen stiffness modulus using the cam model
DOI:
https://doi.org/10.3846/bjrbe.2018.386Keywords:
Christensen−Anderson−Marasteanu (CAM) model, long-term ageing, short-term ageing, viscoelasticity, warm mix asphalt technologyAbstract
This article presents the results of the viscoelastic properties of the polymer-modified bitumen produced in Warm Mix Asphalt technology. A Fischer-Tropsch synthetic wax and a liquid surface-active agent (fatty amine) were used as bitumen viscosity-reducing modifiers. All tested parameters were determined after short-term and long-term ageing. The complex modulus G* and phase angle δ were measured with a cone-plate rheometer. All dynamic tests were performed at 60 °C within the frequency range from 0.005 Hz to 10 Hz. On the basis of the rheological index R determined using the Christensen−Anderson−Marasteanu (CAM) model, it was found that the fatty amine additive slowed down the age-hardening process in the bitumen. In contrast, the synthetic wax increased the stiffness of the bitumen at all levels tested, regardless of the type of ageing simulation process.References
Airey, G. D. (2003). Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel, (82), 1709- 1719. http://doi.org/10.1016/S0016-2361(03)00146-7
Anderson, D. A., Christensen, D. W., Bahia, H. U., Dongré, R., Sharma, M. G., Antle, C. E., & Button, J. (1994). Binder characterization and evaluation. Volume 3: Physical Characterization. SHRP-A-369. National Research Council, Washington D.C.
Anderson, D. A., & Marasteanu, M. (2010). Continuous models for characterizing linear viscoelastic behavior of asphalt binders. ISAP Workshop on Asphalt Binders and Mastics, 16-17 September 2010.
Chapra, S. C., & Canale, R. P. (2010). Numerical Methods for Engineers (6th ed.). Mc Graw-Hill.
Cholewińska, M., Iwański, M., & Mazurek, G. (2017). Viscoelastic properties of polymer modified bitumen in warm mix asphalt technology in terms of ageing. Procedia Engineering, (72), 401-408. http://doi.org/10.1016/j.proeng.2017.02.007
Cholewińska, M., Mazurek, G., & Iwański, M. (2014). Properties of bitumen with modifying additives after short-term ageing. Budownictwo i Architektura, 13(1), 15-27.
Iwański, M., & Mazurek, G. (2011). The influence of the lowviscosity modifier on viscoelasticity behaviour of the bitumen at high service temperatures. 8th International Conference Environmental Engineering, 19-20 May 2011. Vilnius, Lithuania.
Iwański, M., & Mazurek, G. (2013). Optimization of the synthetic wax content on example of bitumen 35/50. 11th International Conference “Modern Building Materials, Structures and Techniques”, 16-17 May 2013. http://doi.org/10.1016/j.proeng.2013.04.054
Iwański, M., & Mazurek, G. (2015). Effect of Fischer-Tropsch synthetic wax additive on the functional properties of bitumen. Polimery, (4), 272-278. http://doi.org/10.14314/polimery.2015.272
Judycki, J. (2014). Influence of low-temperature physical hardening on stiffness and tensile strength of asphalt concrete and stone mastic asphalt. Construction and Building Materials, (61), 191-199. http://doi.org/10.1016/j.conbuildmat.2014.03.011
Judycki, J., & Jaskuła, P. (2002). The influence of ageing and action of water and frost on changes of properties of asphalt mixes. VIII Konferencja Naukowa Komitetu Inżynierii Lądowej i Wodnej PAN i Komitetu Nauki PZITB, Krynica: 221-233.
Kim, Y. R. (2009). Modelling of asphalt concrete. McGraw-Hill.
Kleizienė, R., Vaitkus, A., & Čygas, D. (2016). Influence of asphalt visco-elastic properties on flexible pavement performance. The Baltic Journal of Road and Bridge Engineering, (4), 313-323. http://doi.org/10.3846/bjrbe.2016.36
Król, J. B., Kowalski, K. J., Radziszewski, P., & Sarnowski, M. (2015). Rheological behaviour of n-alkane modified bitumen in aspect of warm mix asphalt technology. Construction and Building Materials, (93), 703-710. http://doi.org/10.1016/j.conbuildmat.2015.06.033
Li, X., Zofka, A., Marasteanu, M., & Clyne, T. R. (2006). Evaluation of field ageing effects on asphalt binder properties. Road Materials and Pavement Design, (7), 57-73. http://doi.org/10.1080/14680629.2006.9690058
Marasteanu, M., & Anderson, D. (1996). Time temperature dependency of asphalt binders- an improved model. Journal of the Association of Asphalt Paving Technologists, (65), 407-448.
Marasteanu, M., & Anderson, D. A. (1999). Improved model for bitumen rheological characterization. Eurobitume Workshop on Performance Related Properties for Bituminous Binders (133). Luxembourg.
PN-EN 12607-1. (2014). Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air. RTFOT method.
PN-EN 14770. (2012). Bitumen and bituminous binders. Determination of complex shear modulus and phase angle. Dynamic Shear Rheometer (DSR).
PN-EN 13632. (2012). Bitumen and bituminous binders. Visualisation of polymer dispersion in polymer modified bitumen.
Słowik, M., & Bilski, M. (2017). An experimental study of the impact of aging on Gilsonite and Trinidad Epuré modified asphalt binders properties. The Baltic Journal of Road and Bridge Engineering, (2), 71-81. http://doi.org/10.3846/bjrbe.2017.09
Yusoff, Md., & Izzi, N. (2012). Modelling the linear viscoelastic rheological properties of bituminous binders (PhD thesis). University of Nottingham.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Małgorzata Cholewińska, Marek Iwański, Grzegorz Mazurek
This work is licensed under a Creative Commons Attribution 4.0 International License.